K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

Bài 41. Cho tam giác ABC, cac tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID AB(D nằm trên AB), IE  BC (E thuộc BC ), IF vuông góc với AC(F thuộc AC)                                   CMR: ID=IE=IF.

Giải:

Hai tam giác vuông BID và BIE có:

BI là cạnh chung

=(gt)

nên ∆BID=∆BIE.

(cạnh huyền - góc nhọn)

Suy ra ID=IE (1)

Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).

Suy ra: IE =IF (2)

Từ (1)(2) suy ra: ID=IE=IF.

 

20 tháng 9 2015

Ông Thắng chỉ cần ấn nhầm vài cái xóa là được mà@@

20 tháng 9 2015

bệnh hả kieu cao duong

avt246927_60by60.jpg

20 tháng 9 2015

thằng kieu cao duong làm ng` ta kéo muốn chết

20 tháng 9 2015

https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Ceva

 

Theo định lý Ceva ta có:

\(\frac{SinABM}{SinMBC}.\frac{SinBAD}{SinDAC}.\frac{SinACH}{SinHCB}=1\)

Vì BAD = DAC nên \(\frac{SinACH}{SinHCB}.\frac{SinABM}{SinMBC}=1\)

SinACH = CosA; SinHCB = CosB

=> .\(CosA.\frac{SinABM}{SinCBM}=CosB\) (1)

Diện tích tam giác ABM là: \(\frac{1}{2}SinABM.BM.AB\)

Diện tích tam giác BMC là: \(\frac{1}{2}SinMBC.BM.BC\)

Mà diện tích 2 tam giác này bằng nhau nên \(\frac{SinABM}{SinMBC}=\frac{AB}{BC}\)

(1) => \(CosA\frac{AB}{BC}=CosB\) 

=> AB.CosA = BC.CosB

20 tháng 9 2015

có chiều dài 1 cm chiều rộng 1 cm chiều cao cũng 1 cm

20 tháng 9 2015

Chắc vì đây là hình hộp

19 tháng 9 2015

Đặt a = 1-x

\(^{a^3+b^3=2=>b^3=2-a^3=2-\left(1-x\right)^3=1+x^3-3x^2+3x\le x^3+3x^2+3x+1=\left(x+1\right)^3=>b^3\le\left(x+1\right)^3=>b\le x+1}\)N=a+b\(\le\)1-x+x+1=2   

Vậy Max N = 2 <=> x=0 <=> a=b=1

19 tháng 9 2015

a3 + b3 = (a + b).(a2 - ab + b2) = 2 

ta có: a2 - ab + b= (a - (b/2))2 + 3b2/4 => a- ab + b\(\ge\) 0. Do đó, a + b > 0 (do 2> 0)

Áp dụng bất đẳng thức Bu nhi cốp xki ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)

Tiếp tục áp dụng bất đẳng thức Bunhi cốp xki với các số \(a\sqrt{a};\sqrt{a};b\sqrt{b};\sqrt{b}\) ta có

=> \(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2=4\left(a\sqrt{a}.\sqrt{a}+b\sqrt{b}.\sqrt{b}\right)^2\le4.\left(a^3+b^3\right)\left(a+b\right)=8\left(a+b\right)\)

Do a + b > 0 nên \(\left(a+b\right)^3\le8\Rightarrow a+b\le\sqrt[3]{8}=2\)

=> Max N = 2 khi a = b = 1