Cho nửa đường tròn tâm O đường kính AB , dây CD . Gọi H, K theo thứ tự là chân đường vuông góc kẻ từ A , B đến CD
a) CMR : CH = DK
b) CMR \(S_{AHKB}=S_{ACB}+S_{ADB}\)
c) Tính diện tích lớn nhất của tứ giác AHKB . biết AB = 30 ; CD = 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) Điều kiện : x \(\ge\) 0 ; y \(\ge\) 0 ; y \(\ne\) 1 ; x; y không đồng thời bằng 0
+) \(P=\frac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{x\sqrt{x}+x-y+y\sqrt{y}-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(x+\sqrt{x}\right)+\left(y-xy\right)-\left(\sqrt{xy}+\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(1+\sqrt{x}\right)\sqrt{x}+y\left(1-x\right)-\sqrt{y}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(1+\sqrt{x}\right)\left(\sqrt{x}+y-y\sqrt{x}-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-y\sqrt{x}\right)+\left(y-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}\)
\(P=\sqrt{x}\left(1+\sqrt{y}\right)-\sqrt{y}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)
b) Để P = 2 <=> \(\sqrt{x}-\sqrt{y}+\sqrt{xy}=2\) <=> \(\sqrt{x}+\sqrt{xy}=\sqrt{y}+2\)
<=> \(\left(\sqrt{x}+\sqrt{xy}\right)^2=\left(\sqrt{y}+2\right)^2\)
<=> \(x+xy+2x\sqrt{y}=y+4+4\sqrt{y}\)
<=> \(x+xy-y+\left(2x-4\right)\sqrt{y}=4\)(*)
P = 2 <=> (x; y) thỏa mãn (*)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2.\left(2\sqrt{3}\right).1+1}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}}{\sqrt{6}-\sqrt{2}}\)
\(B=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{\left(1-\sqrt{3}\right)^2}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(B=\frac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{\left(1+\sqrt{3}\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{\left(\sqrt{3}+1\right)^2}{3-1}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)
Trịnh Tiến Đức \(\sqrt{2015}\) là số vô hạn không tuần hoàn nha
A B C D x P M Q y E
Đặt AP = x; CQ = y => DP = 12 - x ; BQ = 12 - y
Do PQ là trung trực của AE => PA = PE = x ; QA = QE
Áp dụng ĐL Pi ta go trong tam giác vuông ADE có: AE2 = AD2 + DE2 = 144 + 25 = 169 => AE = 13 => AM = 13/2 = 6,5
+) Áp dụng ĐL Pi ta go trong tam giácvuông DPE có: PE2 = DE2 + DP2 => x2 = 25 + (12 - x)2
=> x2 = 169 - 24x + x2 => x = 169/24
Áp dụng ĐL Pi ta go trong tam giác vuông APM có: PM2 = AP2 - AM2 = x2 - 6,52 => PM = ... (1)
+) Ta có AQ2 = EQ2 => AB2 + BQ2 = CE2 + CQ2 => 144 + (12 - y)2 = 72 + y2
=> 288 - 24y + y2 = 49 + y2 => y = 239/24
=> EQ2 = y2 + 49 = ...
=> MQ2 = EQ2 - EM2 = ...=> MQ = ... => PQ = ... (2)
Từ (1)(2) => Tỉ số PM/PQ =...
có đâu, sáng con ko ăn, đói qá ms ăn, tối thì ko bao j, đói qá lấy sữa ống hoy ^^~~
A C D K B O H I M N C' I' D'
a) +) Gọi I là trung điểm của CD; CD là dây cung của (O) => OI vuông góc với CD
Mà AH | CD; BK | CD => OI // AH // BK
Hình thang AHKB có OI // AH // BK; O là trung điểm của AB => I là trung điểm HK => IH = IK
Mà IC = ID (Vì I là trung điểm của CD)
=> IH - IC = IK - ID => CH = DK
b) Qua I kẻ d // AB cắt AH; BK lần lươt tại M ; N
+) Chứng minh S(IMH) = S(INK):
Tam giác IMH và INK có: góc IHM = IKN (= 90o) ; IH = IK; góc HIM = KIN (đối đỉnh)
=> tam giác IMH = INK (g- c- g)
=> S(IMH) = S(INK)
Mà có: S(AHKB) = S(AHINB) + S(INK); S(AMNB) = S(AHINB) + S(IMH)
=> S(AHKB) = S(AMNB) (1)
Kẻ CC'; II'; DD' vuông góc với AB
+) Dễ có: Tứ giác AMNB là hình bình hành (MN // AB; AM // BN) => S(AMNB) = II'. AB (2)
+) Ta có CC' // DD' => T/g C'CDD' là hình thang
Lại có II' // CC' // DD' và I là trung điểm của CD => I' là trung điểm của C'D'
=> II' là đường trung bình của hình thang C'CDD' => II' = (CC" + DD')/ 2
+) S(ACB) = CC'. AB / 2 ; S(ADB) = DD'.AB / 2 => S(ACB) + S(ADB) = (CC' + DD').AB / 2 = II'.AB (3)
Từ (1)(2)(3) => S(AHKB) = S(ACB) + S(ADB)
c) Theo câu b) S(AHKB) = II'.AB = 30. II'
Xét tam giác vuông OII': II' < OI => S(AHKB) < 30.OI
AB = 30 => OC = AB /2 = 15
OI2 = OC2 - CI2 = 152 - 92 = 144 => OI = 12
=> S(AHKB) < 30.12 = 360
Vậy Smax (AHKB) = 360
rắc rối ra phết !