K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

P lớn nhất khi và chỉ khi \(\frac{9}{\sqrt{x^2+1}}\)  lớn nhất mà \(\frac{9}{\sqrt{x^2+1}}>0\)   nên   \(\frac{9}{\sqrt{x^2+1}}\) lớn nhất khi và chỉ khi \(\sqrt{x^2+1}\) nhỏ nhất.

Mà \(\sqrt{x^2+1}\ge1\)(xảy ra đẳng thức khi x = 0).   \(\Rightarrow P\le1+9=10\)

Vậy max P = 10 khi và chỉ khi x = 0

30 tháng 9 2015

Đặt A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) => \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge1+2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=3\)

Vậy GTNN của \(\frac{1}{A}=3\)

=> GTLN của A là \(\frac{1}{3}\) tại x = 1 

29 tháng 9 2015

Điều kiện : x + 1 > 0 <=> x > -1

\(\frac{x}{1+\sqrt{1+x}}=\frac{x\left(\sqrt{1+x}-1\right)}{\left(1+x\right)-1}=\sqrt{1+x}-1\)=> \(2+\frac{x}{1+\sqrt{1+x}}=\sqrt{1+x}+1\)

Tiếp tục như vậy ta có: 

\(\frac{x}{2+\frac{x}{2+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}}}=\sqrt{1+x}-1\)

PT <=> \(\sqrt{1+x}-1=8\) <=> \(\sqrt{1+x}=9\) <=> 1 + x = 81 <=> x = 80 (Thỏa mãn)

Vậy....

29 tháng 9 2015

Viết lại dãy số :21; 22; 23; 24; 25; 26; 27; ....

=> Số thứ 2190 của dãy số là: 22190 

29 tháng 9 2015

Ta có:

Quy luật:

Số hạng thứ nhất:2=21

Số hạng thứ hai:4=22

Số hạng thứ ba:8=23

Số hạng thứ tư:16=24

....

=>Số thứ n:n=2n

Số thứ 2190 của dãy là:

22190=......

29 tháng 9 2015

Đặt \(\sqrt[3]{7-x}=a;\sqrt[3]{5-x}=b\) ( a + b \(\ne\) 0)

=> a3 + b3 = 12 - 2x = 2(6 - x) ; a3 - b3 = 2

PT <=> \(\frac{a-b}{a+b}=\frac{a^3+b^3}{2}\) <=> (a+ b3)(a+ b) = 2(a - b)

Thế 2 = a3 - bta được: 

(a+ b3)(a+ b) = (a3 - b3)(a - b)

<=> a4 + a3b + ab3 + b4 = a4 - a3b - ab3 + b4

<=>  a3b + ab3  = - a3b - ab3

<=> 2(a3b + ab3) = 0 <=> ab.(a2+ b2) = 0 <=> ab = 0 hoặc a+ b= 0 

+) ab = 0 => a = 0 hoặc b = 0  

Nếu a = 0 thì b3 = - 2 => \(b=-\sqrt[3]{2}\)

Nếu b = 0 thì a= 2 => \(a=\sqrt[3]{2}\)

+) a2 + b2 = 0  => a = b = 0 => Loại (vì a + b khác 0)

Vậy a = 0 hoặc b = 0 

a = 0 => x = 7

b = 0 => x = 5

Vậy........... 

27 tháng 9 2015

Đặt \(\sqrt{x+1}=a;\sqrt{3-x}=b\) (a ;b \(\ge\) 0)

=> a+ b2 = 4   (1)

PT <=> a + b = m   (2)

Để PT đã cho có nghiệm duy nhất <=> hệ pt (1)(2) có duy nhất 1 nghiệm (a; b) và a; b \(\ge\) 0 

(-) a; b \(\ge\) 0 <=> a+ b \(\ge\) 0 và a.b \(\ge\) 0 <=> m \(\ge\) 0 và ab = \(\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\frac{m^2-4}{2}\) \(\ge\) 0 

<=> m \(\ge\) 0 và m2 - 4 \(\ge\) 0  (**) 

(-) Từ (2) => b = m - a . Thay vào (1) ta được :  a2 + (m - a)= 4 <=> 2a2 - 2am + m2 - 4 = 0   (*)

Để hệ có 1 nghiệm (a; b) với a; b \(\ge\) 0 <=> (*) có duy nhất 1 nghiệm \(\ge\) 0 hoặc (*) có 2 nghiệm trái dấu

+) (*) có nghiệm duy nhất <=> \(\Delta\)' = 0 <=> m2 - 2(m- 4) = 0 <=> m2 = 8 <=> m = \(2\sqrt{2}\) hoặc m = - \(2\sqrt{2}\)

khi đó, (*) có nghiệm là a = m => m \(\ge\) 0 

Vậy m = \(2\sqrt{2}\) thỏa mãn (**)

+) (*) có 2 nghiệm phân biệt trái dấu <=> (m- 4)/2 < 0 <=> m2 - 4 < 0 

Đối chiếu với điềm kiện (**) => m = \(\phi\)

Vậy Với m = \(2\sqrt{2}\) thì PT đã chp có nghiệm duy nhất 

27 tháng 9 2015

Điều kiên: 5 - x \(\ge\) 0 ; 3x + 1 \(\ge\) 0 <=> 5 \(\ge\) x \(\ge\) -1/3

PT <=> \(\frac{\left(\sqrt{5-x}-\sqrt{3x+1}\right)\left(\sqrt{5-x}+\sqrt{3x+1}\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}=8.\left(x-1\right).\left(x+3\right)\)

<=> \(\frac{5-x-3x-1}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}-8.\left(x-1\right).\left(x+3\right)=0\)

<=> \(\frac{4\left(1-x\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(1-x\right).\left(x+3\right)=0\)

<=> \(\left(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)\right).\left(1-x\right)=0\)

<=> 1 - x = 0 (Vì \(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)>0\) với x thuộc đkxd)

<=> x = 1 (t/m)

Vậy x = 1

27 tháng 9 2015

Bác ấy tự túc        

28 tháng 9 2015

BCADMGEO

Gọi; M là trung điểm của AC;  G là trọng tâm của tam giác ABC. Nối E với G; O với D

+) Vì G là trong tâm của tam giác ABC => MG = \(\frac{1}{3}\)MB => MG/ MB = \(\frac{1}{3}\)

E là trong tâm của tam giác ACD => ME = \(\frac{1}{3}\) MD => ME/ MD = \(\frac{1}{3}\)

Tam giác DMB có MG/ MB = ME/MD (= \(\frac{1}{3}\)) => EG // AB (Định lí Ta lét)

Vì O là tâm đường tròn ngoại tiếp tam giác ABC => O là giao của 3 đường trung trực => OD là đường trung trực của AB => OD vuông góc với AB 

=> EG vuông góc với OD (1)

+) Tam giác ABC cân tại A có AO là đường trung trực nên đông thời là đường trung tuyến

Mà AG cũng là đường trung tuyến (Vì G là trọng tâm tam giác) => AO trùng với AG => A; O; G thẳng hàng

Mặt khác AO vuông góc với BC ( vì AO là đường trung trực của đoạn BC)

DM // BC (vì DM là đường trung bình của tam giác ABC) 

=> AO vuông góc với BC => OG vuông góc với BC   (2)

Từ (1)(2) ta có: OD; OG là hai đường cao của tam giác DEG mà OD cắt OG = O => O là trực tâm của tam giác DEG 
=> OE vuông góc với DG 

Hay OE vuông góc với DC

27 tháng 9 2015

khó chứng minh quá đi

A B C H K E O

tớ nghĩ câu này cm E nằm trên đường kính HK là ra nhưng cm ra s thì chả bk ^^