giải bất phương trình (x + 1)2 < (x - 1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có 2x2 + 1 > 0 với mọi x
Khi lấy x là số âm rất lớn thì 2x là số âm rất lớn => 1/2x là số âm rất nhỏ => A nhận giá trị âm càng nhỏ
=> A không có giá trị nhỏ nhất
+) Sửa đề: Tìm GTNN của A với x > 0
A = \(x+\frac{1}{2x}\) = \(\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{\sqrt{2x}}+\left(\frac{1}{\sqrt{2x}}\right)^2+\sqrt{2}\) = \(\left(\sqrt{x}-\frac{1}{\sqrt{2x}}\right)^2+\sqrt{2}\ge\sqrt{2}\)
=> GTNN của A bằng \(\sqrt{2}\) khi x = \(\frac{1}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a3 + b3 + c3 - 3ab = [(a + b)3 - 3ab(a + b)] + c3 - 3ab = [(a+ b)3 + c3] - 3ab. (-c) - 3ab
= (a + b+ c)3 - 3(a+ b).c.(a+ b+ c) + 3abc - 3ab = 3abc - 3ab = 3ab.(c - 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C O H P E F D M N I K R Q
a) - Xét tam giác ABH có: P; K là trung điểm của AB; BH => PK là đường trung bình của tam giác => PK // AH và PK = AH/ 2
Có AH // OM (cùng vuông góc với BC) => PK // OM
- xét tam giác BHC có: M; K là Trung điểm của BC; BH => MK là đường trung bình của tam giác => MK // CH
mà CH // OP nên MK // OP. Lại có PK // Om nên t/g OPKM là hbh => PK = OM . PK = AH/ 2 => OM = AH/ 2
ta có: IH = AH/ 2 => IH = OM ; IH // OM => T/g IOMH là hbh => hai đường chéo IM ; OH cắt nhau tại trung điểm Q của mỗi đường
b) - Tam giác IDM vuông tại D có: DQ là trung tuyến => QD = QI = QM = IM / 2
- T/g AOMI là hbh (vì OM = AI ; OM // AI) => OA = IM
=> QD = QI = QM = OA/ 2
c) Tương tự, câu a: chứng minh được Q là trung điểm của KN và RP
=> Kết quả tương tự câu b: QK = QN = QE = OB/ 2
QP = QR = QF = OC/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2^5.4^3.5+2^5.10}{16}=\frac{2^5.\left(64.5+10\right)}{2^4}=2.330=660\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
<=>(x+1)2-(x-1)2<0
<=>(x+1+x-1)(x+1-x+1)<0
<=>2x.2<0
<=>x<0