K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

C1: Bình phương 2 vế ta có: \(55-6\sqrt{6}=\left(a+b\sqrt{6}\right)^2\)

<=> \(55-6\sqrt{6}=a^2 +6b^2+2ab\sqrt{6}\)

=>  a2 + 6b2 = 55 và 2ab = - 6

=> a2 + 6b2 = 55   (1)   và ab = -3  => a = -3/b (2)

thế (2) vào (1) ta được : \(\left(-\frac{3}{b}\right)^2+6b^2=55\) => \(9+6b^4=55b^2\)

=> 6b4 - 55b2 + 9 = 0 => 6b4 - 54b- b+ 9 =0 <=> 6b2.(b2 - 9) - (b2 - 9) = 0 <=> (6b2 - 1).(b- 9 ) = 0 

<=> b= 1/6 (Loại; vì b nguyên )  hoặc b= 9 

+) b2 = 9 => a= 1 => a = 1 hoặc - 1 ; b = 3 hoặc - 3

Do \(a+b\sqrt{6}\) > 0  và a; b trái dấu nên a =  -1; b = 3 => a+ b = 2

Vậy a +  b  = 2

C2\(\sqrt{55-6\sqrt{6}}=\sqrt{\left(3\sqrt{6}\right)^2-2.3\sqrt{6}.1+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}\)

\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)

=> a = -1; b = 3 => a + b = 2

2 tháng 10 2015

Theo hệ thức liên hệ giữa cạnh góc vuông và đường cao, ta có

 \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\to\frac{1}{AH^3}=\frac{1}{AB^2\cdot AH}+\frac{1}{AC^2\cdot AH}\)                                    \(\left(1\right)\)

Vì \(AH\)  là đường cao của tam giác nên \(AH<\)\(AB,AC.\)  Suy ra \(\frac{1}{AB^2\cdot AH}+\frac{1}{AC^2\cdot AH}>\frac{1}{AB^3}+\frac{1}{AC^3}.\)                \(\left(2\right)\).

Từ \(\left(1\right)\)  và   \(\left(2\right)\)  suy ra \(\frac{1}{AH^3}>\frac{1}{AB^3}+\frac{1}{AC^3}.\)

1 tháng 10 2015

Điều kiện: x+ 1 > 0

PT <=> \(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\sqrt{x+1}=a;\sqrt{x^2-x+1}=b\) (a; b > 0) => a+ b= x+ 2

Khi đó, PT <=> 5ab = 2(a+ b2)  <=> 2a2 - 4ab - ab + 2b= 0 <=> 2a(a - 2b) - b(a - 2b) = 0 <=> (2a - b)(a - 2b) = 0

<=> a = 2b hoặc b = 2a

+) Nếu a = 2b thì  \(\sqrt{x+1}=2\sqrt{x^2-x+1}\) <=> x+ 1 = 4(x2 - x + 1) <=> 4x2 - 5x + 3 = 0 ( tính \(\Delta\) suy ra x...)

+) Nếu b = 2a : giải tương tự

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

30 tháng 9 2015

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

30 tháng 9 2015

o---o

30 tháng 9 2015

+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)

\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)

\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)

+x=3

PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)

\(\Leftrightarrow-3m-3+2m+6=0\)

\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)

30 tháng 9 2015

Gọi chữ số đơn vị là x (0 < x < 7)

Chữ số hàng chục là x + 2

Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :

10(x + 2) + x = (x + 2)2 + x2 + 1

Giải phương trình trên ta được x = 5 => x + 2 = 7

Số cần tìm là 75

30 tháng 9 2015

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dung BĐT cô si cho 2 số không âm ta được:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)

\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)

Suy ra: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\left(\text{ điều phải chứng minh}\right)\)

30 tháng 9 2015

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng tổng hai phân số nghịch đảo lớn hơn hoặc bằng 2 ta có :

\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

=> ĐPCM

30 tháng 9 2015

Theo tính chất tia phân giác ta có:  \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).

\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).

Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).

 AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

30 tháng 9 2015

A B D C