\(\left(x+3\right)\left(x+7\right)\left(x+11\right)\left(x+15\right)-144\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2\left(x-3\right)+12-4x=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x\in\left\{\pm2\right\}\end{cases}}\)
b) \(x\left(2x-7\right)-3\left(7-2x\right)=0\)
\(x\left(2x-7\right)+3\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-7=0\\x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-3\end{cases}}\)
c) \(\left(2x-1\right)^2-25=0\)
\(\left(2x-1\right)^2-5^2=0\)
\(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\left(2x-6\right)\left(2x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
d) \(\left(3x-5\right)^2-\left(2x-3\right)^2=0\)
\(\left(3x-5-2x+3\right)\left(3x-5+2x-3\right)=0\)
\(\left(x-2\right)\left(5x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5x-8=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{5}\end{cases}}\)

Thực hiện phép chia đa thức, ta có:
\(3x^3+2x^2-7x+a=\left(3x-1\right).\left(x^2+x-2\right)+a-2\)
Để đa thức \(3x^3+2x^2-7x+a\)chia hết cho đa thức 3x-1 thì a-2=0=> a=2
Đặt \(f\left(x\right)=3x^3+2x^2-7x+a\)
Áp dụng định lý Bezout:
\(f\left(x\right)=3x^3+2x^2-7x+a\)chia hết cho đa thức 3x - 1
\(\Leftrightarrow f\left(\frac{1}{3}\right)=0\)
\(\Leftrightarrow3.\left(\frac{1}{3}\right)^3+2.\left(\frac{1}{3}\right)^2-7.\frac{1}{3}+a=0\)
\(\Leftrightarrow\frac{1}{9}+\frac{2}{9}-\frac{7}{3}+a=0\)
\(\Leftrightarrow\frac{1}{3}-\frac{7}{3}+a=0\)
\(\Leftrightarrow-2+a=0\)
\(\Leftrightarrow a=2\)
Vậy a = 2 thì \(f\left(x\right)=3x^3+2x^2-7x+a\)chia hết cho đa thức 3x - 1

\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(ab+bc+ca\le2\)
\(\Leftrightarrow\)\(2ab+2bc+2ca\le4\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca\le6\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2\le6\)
\(\Leftrightarrow\)\(-\sqrt{6}\le a+b+c\le\sqrt{6}\)
hếy bít làm :vvv
hỏi j thế bạn, không có đề sao làm
đề bài sai