Rút gọn biểu thức \(\left[\frac{2\sqrt{ab}}{a-b}+\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}\right].\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{b}-\sqrt{a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt x = 1000 000 đồng gốc ban đầu
Hếtkì hạn đợt đầu tiên người đó thu được cả gốc lẫn lãi là: x + 3.0,68%x = (1 + 3.0,68%).x, cũng chính là vốn của đợt gửi tiết kiệm lần 2
Hết kì hạn đợt gửi thứ hai, người đó thu được về là: (1 + 3.0,68%).x + 3.0,68%.(1 + 3.0,68%).x= (1 + 3.0,68%)2.x , là vốn của đợt gửi tiết kiệm lần 3
....
=> Tiếp tục như vậy, đến hết kì hạn đợt gửi thứ 15 (tức là sau 45 tháng) người đó nhận được số tiền là: (1 + 3.0,68%)15.x
Sau tháng thứ 46, vì chưa hết kì hạn mà rút tiền thì cách tính lãi suất thay đổi (0,58% / tháng)
=> Sau tháng thứ 46 ,người đó nhận được số tiền là: (1 + 3.0,68%)15.x + 0,58%. (1 + 3.0,68%)15.x =(1+ 0,58%). (1 + 3.0,68%)15.x
Thay x = 1000 000 đồng ta có số tiền đó là: (1+ 0,58%). (1 + 3.0,68%)15.1000 000 \(\approx\) 1 361 659 đồng
ĐS:...

Giả sử a; b; c lần lượt là các cạnh của tam giác ABC ứng với 3 đường cao ha = 3,6; hb = 4,5; hc = 6 (a = BC; b = AC; c = AB)
Ta có a.ha = b.hb = c.hc (cùng bằng 2.SABC)
=> 3,6.a = 4,5.b = 6.c => 36a = 45b = 60c => \(\frac{36a}{180}=\frac{45b}{180}=\frac{60c}{180}\) => \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k\) ( k khác 0) => a = 5k; b = 4k ; c = 3k
Nhận xét: (4k)2 + (3k)2 = (5k)2 => b2 + c2 = a2 => Tam giác ABC vuông tại A
A B C H
Áp dụng hệ thức lượng trong tam giác vuông ABC có: AH.BC = AB . AC => 3,6.5k = 3k.4k => 12k2 = 18k => k = 18/12 = 1,5
=> BC = 5k = 5.1,5 = 7,5
=> S(ABC) = AH.BC /2 = 3,6.7,5: 2 = 13,5

Tự tìm đkxđ
\(=\left(\frac{x-\sqrt{x}}{x^2-x}+\frac{x+\sqrt{x}}{x^2-x}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{2x}{x.\left(x-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}\)

A = \(\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
= \(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
= \(\sqrt{x-4}+2+l\sqrt{x-4}-2l\)
(+) với \(l\sqrt{x-4}-2l=\sqrt{x-4}-2\) khi \(x\ge8\)
=> A = \(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
(+) \(l\sqrt{x-4}-2l=2-\sqrt{x-4}\) khi \(4\le x\le8\)
=> A = \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
1) Áp dụng bất đẳng thức Cô - si với 4 số \(\frac{5x}{3};\frac{5x}{3};\frac{5x}{3};\frac{1}{x^3}\) dương ta có:
\(B=\frac{5x}{3}+\frac{5x}{3}+\frac{5x}{3}+\frac{1}{x^3}\ge4\sqrt[4]{\frac{5x}{3}.\frac{5x}{3}.\frac{5x}{3}.\frac{1}{x^3}}=4\sqrt[4]{\frac{125}{27}}\)
=> B nhỏ nhất bằng \(4\sqrt[4]{\frac{125}{27}}\) khi \(\frac{5x}{3}=\frac{1}{x^3}\) => x4 = 3/5 => x = \(\sqrt[4]{\frac{3}{5}}\)
2) ĐK : x > 4
\(A=\sqrt{\left(x-4\right)+2\sqrt{x-4}.2+4}+\sqrt{\left(x-4\right)-2\sqrt{x-4}.2+4}\)
\(A=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(A=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
+) Nếu \(\sqrt{x-4}\ge2\) => x - 4 > 4 => x > 8 thì \(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
+) Nếu \(\sqrt{x-4}<2\) => x < 8 thì \(A=\sqrt{x-4}+2-\sqrt{x-4}+2=4\)
Vậy với x > 8 thì \(A=2\sqrt{x-4}\)
4 < x < 8 thì A = 4

220 = (210)2 = 10242 = (...76)
Chú ý: Lũy thừa những số có tận cùng là 76 thì tận cùng là 76
+) Ta có: 22000 = (220)100 = (...76)100 = (...76)
+) 22001 = 2.22000 = 2.(...76) = (...52)
+) 22002 = 22.22000 = 4.(...76) = (....04)
=> 22000 + 22001 + 22002 có hai chữ số tận cùng là hai chữ số tận cùng của (76 + 52 + 04) = 132
Vậy 22000 + 22001 + 22002 có tận cùng là 32
22000+22001+22002=22000(1+2+22)=22000.5=21999.10
21999=24.24...24.23
=16.16...16.8
=...8
=>21999.10=...8.10=...80
Vậy 2 chữ số tận cùng của 22000+22001+22002 là 80

VT = \(\text{ }\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=\sqrt{2.2}=2\)
Dấu bằng xảy ra khi 2x - 3 = 5- 2x => x = 2
VP = \(3x^2-12x+14=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
Dấu = xảy ra khi x = 2
=> VT = VP = 2 khi x = 2
\(=\left(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{b}-\sqrt{a}}\)
\(=\left(\frac{4\sqrt{ab}+\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\frac{4\sqrt{ab}+a-2\sqrt{ab}+b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=1\)
tick cho mình nha
trục căn ở mẫu là đc :D