K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

Đặt \(a=\sqrt{x};b=\sqrt[3]{x-1}\) ( a > 0 )

=> a2 = x; b3 = x - 1 => b= a2 - 1 <=> a - b= 1  (1)

PT trở thành a + b = 1 => a = 1 - b (2)

Thay (2) vào (1) ta có: (1 - b)- b= 1 <=> 1 - 2b + b2 - b= 1 <=> b- b+ 2b = 0 <=> b.(b- b + 2) = 0 <=> b = 0 hoặc b2 - b + 2 = 0 

+) b = 0 => \(\sqrt[3]{x-1}=1\) <=> x - 1 = 1 <=> x = 2

+) b2 - b + 2 = 0  <=> (b- 2.\(\frac{1}{2}\).b + \(\frac{1}{4}\))  + \(\frac{7}{4}\) = 0 <=> (b - \(\frac{1}{2}\))\(\frac{7}{4}\) = 0 (PT vô nghiệm)

Vậy x = 2

7 tháng 10 2015

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2}}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Tương tự với 2 số còn lại, cộng theo vế ta được kết quả cần tìm.

6 tháng 10 2015

ĐK: 3 - 2x > 0 <=> x < 3/2

3x2 - 6x + 4 = 3(x - 1)2 + 1 > 0  =>  \(x\sqrt{3-2x}\) > 0 => x > 0 

Binh phương 2 vế của PT ta được: 

x2.(3 - 2x) = (3x2 - 6x + 4)2

<=> 3x2 - 2x3 = 9x4 + 36x2 + 16 - 36x3 + 24x2 - 48x

<=> 9x- 34x3 + 57x2 - 48x + 16 = 0 

<=> (9x4 - 9x3) - (25x3 - 25x2) + (32x2 - 32x) - (16x - 16) = 0 

<=> 9x3.(x - 1) - 25x2.(x - 1) + 32x.(x - 1) - 16(x - 1) = 0 

<=> (x - 1).[9x3 - 25x+ 32x - 16] = 0 

<=> (x - 1).[(9x3 - 9x2) - (16x2 - 16x) +  (16x - 16) ]   = 0 

<=> (x - 1).[(x - 1). (9x2 - 16x + 16)] = 0 

<=> (x - 1)2.(9x2 - 16x + 16) = 0 <=> x - 1 = 0 hoặc 9x2 - 16x + 16 = 0 

+) x -1 = 0 <=> x =1 (T/m)

+) 9x2 - 16x + 16 = 0  (Vô nghiệm)

Vậy...............

5 tháng 10 2015

Phân số tổng quát 

\(\frac{x}{x^4+x^2+1}=\frac{x}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

với x = 1;2;...;2014 ta có :

A  = \(\frac{1}{1.3}+\frac{2}{3.7}+\frac{3}{7.13}+....+\frac{2014}{4054183.4058211}\)

A = \(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4054183}-\frac{1}{4058211}\right)\)

5 tháng 10 2015

ĐK:.....

\(\left(\frac{1}{x}+\frac{1}{x+7}\right)+\left(\frac{1}{x+2}+\frac{1}{x+5}\right)=\left(\frac{1}{x+1}+\frac{1}{x+6}\right)+\left(\frac{1}{x+3}+\frac{1}{x+4}\right)\)

=> \(\frac{2x+7}{x\left(x+7\right)}+\frac{2x+7}{\left(x+2\right)\left(x+5\right)}=\frac{2x+7}{\left(x+1\right)\left(x+6\right)}+\frac{2x+7}{\left(x+3\right)\left(x+4\right)}\)

=> \(\left(2x+7\right)\left(\frac{1}{x\left(x+7\right)}+\frac{1}{\left(x+2\right)\left(x+5\right)}-\frac{1}{\left(x+1\right)\left(x+6\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)}\right)=0\)

=> 2x + 7 = 0 hoặc \(\frac{1}{x\left(x+7\right)}+\frac{1}{\left(x+2\right)\left(x+5\right)}-\frac{1}{\left(x+1\right)\left(x+6\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)}=0\)

+)  2x + 7 = 0 => x = -7/2 (T/m)

+) \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}=0\) (*)

Đặt t = x+ 7x . Khi đó pt có dạng

\(\frac{1}{t}+\frac{1}{t+10}-\frac{1}{t+6}-\frac{1}{t+12}=0\)

=> (t + 10)(t + 6)(t + 12) + t(t + 6)(t + 12) - t(t + 10)(t + 12) - t(t + 10)(t + 6) = 0 

=> [(t + 10)(t + 6)(t + 12) - t(t + 10)(t + 12)] + [t(t + 6)(t + 12) - t(t + 10)(t + 6)] = 0 

=> 6(t + 10)(t + 12) + 2t(t + 6) = 0 

<=> 6t2 + 132t  + 720 + 2t+ 12t = 0 

=> 8t2 + 144t + 720 = 0  (PT này vô nghiêm)

=> (*) Vô nghiệm

Vậy PT đã cho có nghiệm là x = -7/2

5 tháng 10 2015

tui ra rồi, nhân 2 vô A hả

5 tháng 10 2015

a^4+a^2+1=(a^2+1)^2-a^2=(a^2-a+1)(a^2+a+1)

5 tháng 10 2015

ĐKXĐ :  -1 <= x <= 3 

XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)

=> VT > 0 

VÌ -1 <=x <=3  => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)

Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :

\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)

=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0 

VP = \(\sqrt{3}-x^2\le\sqrt{3}\)

Dấu bằng xảy ra khi x = 0 

Để VT bằng VP => x = 0