Cho biểu thức: \(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) với x ≥ 0, x # 1.
1) Rút gọn A
2) Chứng tỏ rằng: A < 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
<=> a + b + c = bc + ac + ab
<=> (a - ac) + (b - bc) + (c - ab) = 0
<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0
<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0
<=> (1 - c)(ca + cb - c - 1) = 0
<=> (1 - c)[c(a -1) + (cb - abc)]= 0
<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0
<=> (1 - c)(a - 1)(c - cb) = 0
<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1
Vậy....
2x+3y=5
=>x=\(\frac{5-3x}{2}\)
=>F=\(2.\frac{\left(5-3y\right)^2}{4}+3y^2=\frac{25-30y+9y^2}{2}+\frac{6y^2}{2}\)
\(=\frac{25-30y+15y^2}{2}=\frac{15y^2-30y+15+10}{2}\)
\(=\frac{15.\left(y-1\right)^2+10}{2}=\frac{15.\left(y-1\right)^2}{2}+5\ge5\)
Dấu "=" xảy ra khi : y=1 =>x=\(\frac{5-3}{2}=1\)
kakaka bik giải rùi
\(x^4-24x-32=0\)
\(\Leftrightarrow x^4=24x+32\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+24x+36\)
\(\Leftrightarrow\left(x^2+2\right)^2=4.\left(x+3\right)^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-4.\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x^2+2-2x-6\right)\left(x^2+2+2x+6\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\text{ hoặc }x^2+2x+8\)
\(\cdot x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\)
\(\Leftrightarrow\left(x-1+\sqrt{5}\right)\left(x-1-\sqrt{5}\right)=0\)
\(\Leftrightarrow x=1-\sqrt{5}\text{ hoặc }x=1+\sqrt{5}\)
\(\cdot x^2+2x+8=0\left(\text{vô nghiệm}\right)\)
Vậy x=...........
Cách khác:
mỗi người đều có 5 quả và thừa 5 quả, do đó nếu ta lấy 5 quả từ một người nào đó cộng với 5 quả thừa => được 10 quả, đem chia 10 quả này cho các người còn lại thì mỗi người tăng thêm 1 quả => số người còn lại là 10
=> số người là 11
=> số quả là 5*11+5 = 60
sai thì thôi nha đừng có mắng
1) \(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(A=\frac{x+2-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{1}{\left(x-\sqrt{x}+1\right)}=\frac{-1}{x+\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(A=\frac{-\left(x-\sqrt{x}+1\right)+\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(x+1\right)^2-\left(\sqrt{x}\right)^2}=\frac{2\sqrt{x}}{x^2+x+1}\)
2) Xét hiệu \(A-\frac{1}{3}=\frac{2\sqrt{x}}{x^2+x+1}-\frac{1}{3}=\frac{6\sqrt{x}-\left(x^2+x+1\right)}{3\left(x^2+x+1\right)}\)
Mẫu luôn > 0
Tử chưa chắc < 0 .Ví dụ lấy x = 2 thì tử > 0 => Không khẳng định được A < 1/3