chứng minh
\(\left|x-2a\right|+\left|x-2b\right|+\left|x-2c\right|+\left|x\right|\ge2\left(\left|a\right|+\left|b\right|+\left|c\right|\right).\)
với a,b,c,xlà các số thực
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{2.2012}{1+\frac{2}{2.\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+\frac{2}{2\left(1+2+3+4\right)}+...+\frac{2}{2\left(1+2+..+2012\right)}}\)
\(=\frac{2.2012}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{4050156}}\)
\(=\frac{2.2012}{1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4050156}\right)}\)
\(=\frac{2.2012}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2012.2013}\right)}\)
\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{2013}\right)}\)
\(=\frac{2.2012}{1+\frac{2.2011}{2.2013}}\)
\(=\frac{2.2012}{1+\frac{2011}{2013}}\)
\(=\frac{4024}{\frac{4024}{2013}}\)
\(=2013\)
Vậy D=2013
Có : \(x^2+x+1=0\)
\(x^2\ge0\)( với mọi x )
\(\Rightarrow x^2+x+1>0\)( với mọi x )
\(\Rightarrow x\)không tồn tại
Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
Nếu bạn cần thì bạn lấy bài 1 trước nhá :
Gọi 2 góc kề bù lần lượt là A và B (cần có dấu mũ ở trên nhé)
Ta có: A + B = 180 (độ) <=> 1/2A + 1/2B = 1/2(A+B) = 90 (độ)
Vẽ hình ra là sẽ thấy ngay điều phải chứng minh !!
\(\left(64.27\right)^6=12^{18}\Leftrightarrow1728^6=12^8\)
Ta có :
\(12^{18}=\left(12^3\right)^6=1728^6\)
Vì \(1728^6=1728^6\)
\(\Leftrightarrow\left(64.27\right)^6=12^{18}\) đó là điều mà ta phải chứng minh
Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau và bằng nhau
\(A=\frac{\left|x-\right|x\left|\right|}{x},x\ne0\)
\(A=\frac{\left|x-x\right|}{x}\)
\(A=\frac{0}{x}\Rightarrow A=0\)
Ta có:
\(\left|x\right|\ge x\)
\(\Rightarrow x-\left|x\right|\le0\)
\(\Rightarrow\) \(A=\frac{\left|x\right|-x}{x}\)
\(\Rightarrow A=\hept{\begin{cases}\frac{-x-x}{x}=-2;x< 0\\\frac{x-x}{x}=0;x>0\end{cases}}\)
Vậy với x < 0 thì A = -2 ; với x > 0 thì A = 0