K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
Xét hiệu: 

$\frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}-(\sqrt{2022}+\sqrt{2023})$

$=(\frac{2022}{\sqrt{2023}}-\sqrt{2023})+(\frac{2023}{\sqrt{2022}}-\sqrt{2022})$

$=\frac{2022-2023}{\sqrt{2023}}+\frac{2023-2022}{\sqrt{2022}}$

$=\frac{1}{\sqrt{2022}}-\frac{1}{\sqrt{2023}}>0$

$\Rightarrow \frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}>\sqrt{2022}+\sqrt{2023}$

 

27 tháng 3 2023

vì y tỉ lệ thuận với \({}\)\(x\) theo hệ số k nên

y = k\(x\) 

k= 2 => y = 2\(x\)\({}\)

Thay \(x\) = -3 vào biểu thức y = 2\(x\) ta có : y = 2.(-3) = -6

Vậy\(x\) = -3  ;thì y = -6

 

11 tháng 10 2023

áo giúp mình với

26 tháng 3 2023

mik đang cần gấp mong mọi người giúp

 

27 tháng 3 2023

a) Xét tam giác ABE và tam giác ACF
Góc AEB = Góc AFC = 90 độ
Cạnh huyền AB=AC (theo giả thiết)
Góc A chung
Do đó: Tam giác ABE = Tam giác ACF (Cạnh huyền - góc nhọn )
Suy ra: AE=AF (2 cạnh tương ứng)
Xét tam giác AFH và tam giác AEH có:
Góc AFH= góc AEH = 90 độ
Cạnh huyền AH chung
AF=AE ( Chứng minh trên)
Do đó: tam giác AFH = tam giác AEH ( cạnh huyền cạnh góc vuông)
Suy ra góc FAH= góc EAH ( 2 góc tương ứng)
Hay GÓC BAH= GÓC CAH
Xét tam giác ABH và tam giác ACH có:
AB=AC( theo gt)
Góc BAH = Góc CAH ( chứng minh trên)
Cạnh AH chung
Do đó: tam giác ABH = tam giác ACH (c.g.c) 
Vậy tam giác ABH = tam giác ACH (đpcm)
b) Vì tam giác ABC có AB=AC nên tam giác ABC là tam giác cân tại A, do đó suy ra góc B= góc C
Do Tam giác ABE = Tam giác ACF ( theo câu a ) nên suy ra BE=FC  ( 2 cạnh tương ứng )
Ta có: AFC + CFB = 180 Độ (2 góc kề bù)
          AEB + EBC = 180 độ ( 2 góc kề bù )
Mà AFC=AEB vì cùng bằng 90 độ nên CFB=BEC
Xét tam giác BFC và tam giác CEB có:
FB=EC ( chứng mình trên)
Góc B= góc C ( Theo trên)
Cạnh BC chung
Do đó tam giác BFC=tam giác CEB ( cạnh góc cạnh)
Vậy tam giác EBC= tam giác FCB (đpcm)


 


 

27 tháng 3 2023

A = \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\) +......+\(\dfrac{1}{1+2+3+4+....+59}\)

A = \(\dfrac{1}{(3+1).3:2}\) + \(\dfrac{1}{(4+1).4:2}\)+......+\(\dfrac{1}{(59+1).59:2}\)

A = \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) +.....+ \(\dfrac{2}{59.60}\)

A = 2.(\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{59.60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{59}\) - \(\dfrac{1}{60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{60}\))

A = 2. \(\dfrac{19}{60}\)

A = \(\dfrac{19}{30}\)

27 tháng 3 2023

\(\dfrac{3^{10}\cdot11+9^5\cdot5}{27^3\cdot2^4}\cdot x=-9\)

\(\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\cdot x=-9\)

\(\dfrac{3\cdot3^9\cdot16}{3^9\cdot16}\cdot x=-9\)

3x = -9

\(x=-\dfrac{9}{3}=-3\)

\(\dfrac{3\cdot3^9\cdot\left(11+5\right)}{3^9\cdot16}\cdot x=-9\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:

$A=1-3+3^2-3^3+...+3^{2022}-\frac{3^{2023}}{4}$

$3A=3-3^2+3^3-3^4+...+3^{2023}-\frac{3^{2024}}{4}$

$\Rightarrow A+3A=1+3^{2023}-\frac{3^{2023}}{4}-\frac{3^{2024}}{4}$

$\Rightarrow 4A=1$

$\Rightarrow A=\frac{1}{4}$

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
Gọi số cây mà 3 lớp trồng được lần lượt là $a,b,c$ (cây)

Theo bài ra ta có: $a+b+c=150$

$\frac{a}{5}=\frac{b}{3}; \frac{b}{2}=\frac{c}{3}$

$\Rightarrow \frac{a}{10}=\frac{b}{6}=\frac{c}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{a}{10}=\frac{b}{6}=\frac{c}{9}=\frac{a+b+c}{10+6+9}=\frac{150}{25}=6$ 

$\Rightarrow a=10.6=60; b=6.6=36; c=6.9=54$ (cây)