Cho tam giác ABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF a) Chứng minh tam giác AEF cân b vẽ BH vuông góc AE CK vuông góc AE CM tam giác EBH bằng tam giác FCK giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,75+\dfrac{3}{6}-\dfrac{8}{2}=\dfrac{5}{3}+x.\dfrac{-5}{6}\\ \Rightarrow-\dfrac{5}{6}x=\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{8}{2}-\dfrac{5}{3}\\ \Rightarrow-\dfrac{5}{6}x=\dfrac{9}{12}+\dfrac{6}{12}-\dfrac{48}{12}-\dfrac{20}{12}\\ \Rightarrow-\dfrac{5}{6}x=-\dfrac{53}{12}\\ \Rightarrow x=\left(-\dfrac{53}{12}\right):\left(-\dfrac{5}{6}\right)\\ \Rightarrow x=\dfrac{53}{10}\)
12 - 4 = 8
12 - (-4) = 12 + 4 = 16
-12 - (-4) = -12 + 4 = -8
12 + (-4) = 12 - 4 = 8
15 - (-5) = 15 + 5 = 20
12 - 4 = 8
12 - ( -4) = 12 + 4 = 16
-12 - ( -4) = -12 + 4 = - ( 12 - 4 ) = -8
12 + ( -4) = 12 - 4 =8
15 - ( -5) = 15 + 5 =20
32.5 - 22.7 + 83
= 9.5 - 4.7 + 83
= 45 - 28 + 83
= 17 + 83
= 100
tham khảo nhé
Giả sử là số hữu tỉ là phân số tối giản, m; n ∈ Z, m ≠ 0)
Điều này chứng tỏ m2 ⋮ 7 mà 7 là số nguyên tố nên m ⋮ 7
Đặt m = 7k (k ∈ Z), suy ra m2 = (7k)2 = 49k2 (2)
Từ (1) và (2) suy ra: 7n2 = 49k2 ⇒ n2 = 7k2
⇒ n2 ⋮ 7 ⇒ n ⋮ 7 (vì 7 là số nguyên tố)
Do đó cả m và n đều cùng chia hết cho 7, vậy không phải phân số tối giản, mâu thuẫn.
Vậy giả sử sai nên là số vô tỉ (đpcm).
Chứng minh không có nghiệm nguyên dương nhé chứ vẫn có nghiệm nguyên.
`#3107.101107`
Ta có: `\sqrt{50} + \sqrt{65} - \sqrt{16} > \sqrt{49} + \sqrt{64} - \sqrt{16} = 7 + 8 + 4 = 19`
Mà `\sqrt{120} < \sqrt{361} (= 19)`
`\Rightarrow \sqrt{50} + \sqrt{65} - \sqrt{16} > \sqrt{120}`
Bảo mình chép mạng thì lên mạng mà tìm xem có đáp án dở ra ngay trước mặt không? Mà biết thì cũng kệ bạn chứ ai hỏi. Người tiếp xúc qua 2 3 cái màn hình mà làm như kiểu sống dưới gầm dường người khác vậy bạn, bạn nghĩ bạn đủ tư cách để buộc tội mình á? Xin lỗi nha, tới khi nào mình thấy bạn có danh phận ảnh hưởng, có bằng chứng rõ ràng thì lại mở miệng. Kể cả người khác sống trong nhà mình họ còn chưa chắc chắn, bạn lấy điều gì mà tự tin với mấy câu nói vu vơ vậy thế :D? Mà việc mình làm tự bản thân mình cũng biết, chưa cần đến lượt bạn phải nói. Sau bớt bình luận vô duyên giúp, ảnh hưởng noti người khác lắm. Cũng chả ai cần đâu. Đúng vô duyên luôn.
\(D=\left[0;2\right]\)
Có \(f'\left(x\right)=\dfrac{-x+1}{\sqrt{2x-x^2}},\forall x\in\left(0;2\right)\)
\(f'\left(x\right)=0\Leftrightarrow x=1\)
Vậy hàm số đã cho đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)
ĐKXĐ: \(2x-x^2>=0\)
=>\(x^2-2x< =0\)
=>x(x-2)<=0
=>0<=x<=2
\(y=\sqrt{2x-x^2}\)
=>\(y'=\dfrac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\dfrac{-2x+2}{2\sqrt{2x-x^2}}=\dfrac{-x+1}{\sqrt{2x-x^2}}\)
Đặt y'>0
=>-x+1>0
=>-x>-1
=>x<1
=>0<=x<1
=>Hàm số đồng biến khi 0<=x<1
Đặt y'<0
=>-x+1<0
=>-x<-1
=>x>1
=>1<x<=2
=>Hàm số nghịch biến khi 1<x<=2
9+2 = 11
12 + 3 = 15
10 - 1 = 9
21 - 11 = 10
(- 2) - (- 3) = (- 2) + 3 = 1
Sửa đề:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF
a) Chứng minh tam giác AEF cân
b) vẽ BH vuông góc AE, CK vuông góc AF. CM tam giác EBH bằng tam giác FCK.
Giải
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC và ∠ABC = ∠ACB
Ta có:
∠ABC + ∠ABE = 180⁰ (kề bù)
∠ACB + ∠ACF = 180⁰ (kề bù)
Mà ∠ABC = ∠ACB (cmt)
⇒ ∠ABE = ∠ACF
Xét ∆ABE và ∆ACF có:
AB = AC (cmt)
∠ABE = ∠ACF (cmt)
BE = CF (gt)
⇒ ∆ABE = ∆ACF (c-g-c)
⇒ AE = AF (hai cạnh tương ứng)
⇒ ∆AEF cân tại A
b) Do ∆AEF cân tại A (cmt)
⇒ ∠AEF = ∠AFE
⇒ ∠HEB = ∠KFC
Xét hai tam giác vuông: ∆EBH và ∆FCK có:
BE = CF (gt)
∠HEB = ∠KFC (cmt)
⇒ ∆EBH = ∆FCK (cạnh huyền - góc nhọn)