CMR :
A =\(\left(1^{2009}+2^{2009}+...+2009^{2009}\right)\) chia hết cho ( 1 +2 + ... + 2009 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B M C
(=>) Gọi C là giao của AM và đtr
tam giác ABC nội tiếp đtr đường kính AB => tam giác ABC vuông tại C => góc ACB = 900 => góc MCB = 90o
=> Tam giác MCB vuông tại C => góc CMB < 90o Hay góc AMB < 90o
(<=) Giả sử M nằm trong đtr
A B C M
Gọi C là giao của AM và đtr
Tam giác ACB vuông tại C => góc ACB = 90o
Mà góc AMB là góc ngoài của tam giác MCB tại M => góc AMB > góc MCB = 90o => Mâu thuẫn với đề bài
Vậy điều giả sử sai => M nằm ngoài đtr
Vậy...
ĐK: |x| > 1/2
=> \(\sqrt{2\left|x\right|-1}=-x\) => - x > 0 => x < 0 => |x| = - x
Bình phương 2 vế ta có: 2(-x) - 1 = (-x) 2 => x2 + 2x + 1 = 0 => (x+1)2 = 0 => x = -1 (Thỏa mãn)
Vậy...
Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.
Đặt x=HD;
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':
AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):
AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;
Thế vào (***) ta được ph.tr:
(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm
Sửa lại: Tìm GTNN
x > 1 nên x - 1 > 0
Áp dụng BĐT Cauchy ta có : P = \(5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=2.30+6=65\)
Dấu "=" xảy ra <=> 5.(x - 1) = 180/(x-1) <=> (x -1)2 = 36 => x - 1 = 6 => x = 7
Vậy Min P = 65 khi x = 7
sử dụng hệ quả bun-nhi-a ta có:
VT\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca\right)}\)
mà từ giả thiết , kết hợp với bất đẳng thức , ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)=>\(a+b+c\ge9\)
mặt khác: ab+bc+ca\(\le\frac{\left(a+b+c\right)^2}{3}\)
=> VT\(\ge\)\(\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a+b+c+3\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\frac{4\left(a+b+c\right)}{3}}=\frac{a+b+c}{4}\)(dpcm)