Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 02 = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = x2 + y2 + z2 + 2.0
=> x2 + y2 + z2 = 0 <=> z = y = z = 0
=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(^{x^2-xy+y^2=37}_{x+y-1=0}\Leftrightarrow^{x^2-xy+y=37\left(1\right)}_{x+y=1\left(2\right)}\)
Nhân vế \(\left(1\right)\) với vế \(\left(2\right)\), ta có:
\(\left(x+y\right)\left(x^2-xy+y^2\right)=37.1\)
\(\Leftrightarrow x^3+y^3=37\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=37\)
\(\Leftrightarrow1-3xy=37\)
\(\Leftrightarrow3xy=-36\)
\(\Leftrightarrow xy=-12\)
Do đó: \(x^2-xy+y^2-xy=37-\left(-12\right)\)
\(\Leftrightarrow\left(x-y\right)^2=49\)
\(\Leftrightarrow x-y=7\) hoặc \(x-y=-7\)
Lại có: \(x+y=1\left(gt\right)\)
nên \(x=4;y=-3\) hoặc \(x=-3;y=4\)
Vậy, \(x,y\in\left\{\left(4;-3\right),\left(-3;4\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình ché trên mạng
a. Ta xét a = 1
=> a + b^2 = b^2 + 1 = (b^2 - 1) + 2 chia hết cho (b - 1)
=> 2 chia hết cho (b - 1)
=> b = 2 hoặc b = 3
(a, b) = (1, 2), (1, 3) thỏa mãn
b. ta xét a = 2
=> a + b^2 = b^2 + 2 chia hết cho (4b - 1)
=> 4b^2 + 8 chia hết cho (4b - 1)
=> (4b^2 - b) + (b + 8) chia hết cho (4b - 1)
=> (b + 8) chia hết cho (4b - 1) *
Ta thấy * thỏa mãn khi b = 1 hoặc b = 3, với b > 3 ta có (4b - 1) > b + 8
nên b + 8 không chia hết cho (4b - 1)
Thử lại ta thấy (a, b) = (2, 1), (2, 3) thỏa mãn
c. Ta xét a > 2
không thể có b = 1 vì lúc đó ta có
a^2 - a - 2 = a(a - 1) - 2 > 2*(2 - 1) - 2 = 0
=> a + 1 < a^2 - 1
=> a + 1 không thể chia hết cho a^2 - 1
tiếp theo ta xét b >= 2
c.1. xét a > b
a*[a*(b - 1) - 1] >= a*[a*(2 - 1) - 1] = a*(a - 1) > 2*(2 - 1) = 2 > 1
=> a^2(b - 1) - a > 1
=> a^2b - 1 > a + a^2 > a + b^2
=> a + b^2 không thể chia hết cho a^2b - 1
c.2. xét a = b
a^3 - 1 = (a - 1)(a ^2 + a + 1) > (a ^2 + a + 1) > a + a^2
=> a + a^2 không chia hết cho a^3 - 1
c.3 xét a < b
"(a + b^2) chia hết cho (a^2b - 1)"
<=> "(a^3 + a^2*b^2) chia hết cho (a^2b - 1)"
<=> "(a^3 + b) + b*(a^2*b - 1) chia hết cho (a^2b - 1)"
<=> "(a^3 + b) chia hết cho (a^2b - 1)" **
Ta cm ** sai
(a + 1)(a^2 - 1) = (a + 1)(a^2 - a + a - 1) > (a + 1)(a^2 - a + 1) (do a - 1 > 1) = a^3 + 1
=> b >= (a + 1) > (a^3 + 1)/(a^2 - 1)
=> b(a^2 - 1) > a^3 + 1
=> a^2b - 1 > a^3 + b
vậy (a^3 + b) không thể chia hết cho (a^2b - 1) tức ** sai.
*mina*
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x (phút ) là thời gian người khách dó đi từ A đến B
suy ra :Trong x phút người đo gắp x/15 chuyến xe buýt đi từ A đến Bđồng thời gắp x/10 chuyến xe buýt đi từ B tới A
Nếu khi đến B, người đó quay về A ngay thì trong x phút ,người đó gắp x/15 chuyến đi từ B về A đồng thời x/10 phút đi từ A về B
suy ra trong vòng 2x (phút) người đó gặp :x/15+x/10=x/5 (chuyến ) xe buýt đi từ A về B
Thời gian cấc xe lần lượt rời bến là : 2x:x/6=12 phút
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Để phân thức đc xác đinh thì \(x+2\ne0\Rightarrow x\ne-2\)
b/ \(\frac{x^2+4x+4}{x+2}=\frac{\left(x+2\right)^2}{x+2}=x+2\)
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm