từ các chữ số 5,9,4,1,0 có thể lập đc bao nhiêu số có 4 chữ số khác nhau?
làm bài giải giúp mình với,please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
41 427 x 3 = 124281
20805 x 6 = 124830
37008 x 5 = 185040
41 427 x 3 = 124 281
20 805 x 6 = 124 830
37 008 x 5 = 185 040
a) Với x thuộc Z, hiển nhiên cả tử và mẫu đều nguyên
Để A là số hữu tỉ thì:
\(x-1\ne0\Rightarrow x\ne1\)
Vậy để A là số hữu tỉ thì x nguyên và x khác 1
b) Để A là số hữu tỉ dương thì A là số hữu tỉ và A dương
A là số hữu tỉ câu a đã chứng minh
Xét A dương:
\(A=\dfrac{x+1}{x-1}>0\)
=>( x+1>0 và x-1>0 ) hoặc ( x+1<0 và x-1<0 )
=> (x>-1 và x>1) hoặc (x<-1 và x<1)
=> x>1 hoặc x<-1
Kết hợp ĐK A là số hữu tỉ thì x khác 1, x nguyên
Kết luận: x>1 hoặc x<-1, x nguyên thì A là số hữu tỉ dương
hoặc x thuộc Z, x khác {1;0;-1} thì A là số hữu tỉ dương
c) Để A là số hữu tỉ âm thì A là số hữu tỉ và A âm
Xét A âm:
\(A=\dfrac{x+1}{x-1}< 0\)
=> (x+1>0 và x-1<0) hoặc (x+1<0 và x-1>0)
=> (x>-1 và x<1) hoặc (x<-1 và x>1 : Vô lí )
=> -1<x<1
Kết hợp ĐK để A là số hữu tỉ thì: x nguyên và x khác 1
Kết luận: -1<x<1, x nguyên thì A là số hữu tỉ âm
Hay x = 0 thì A là số hữu tỉ âm
d) \(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\left(x\in Z,x\ne1\right)\)
Để A là số nguyên thì: 2/x-1 nguyên
=> 2 chia hết cho (x-1)
=> x-1 thuộc Ư(2)={1;-1;2;-2}
Bảng giá trị:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
A | 3(nhận) | -1(loại) | 2(nhận) | 0(loại) |
Vậy x thuộc {2;3} thì A là số nguyên dương
45 kg 5 dag = 45050 g
456 yến = 45,6 tạ
345 dam2 = 3,45 hm2
|3x - 2| = 4x + 1
|3x - 2| = 3x - 2 khi x ≥ 2/3
|3x - 2| = 2 - 3x khi x < 2/3
*) Với x ≥ 2/3, ta có:
|3x - 2| = 4x + 1
3x - 2 = 4x + 1
3x - 4x = 1 + 2
-x = 3
x = -3 (loại)
*) Với x < 2/3, ta có:
|3x - 2| = 4x + 1
2 - 3x = 4x + 1
-3x - 4x = 1 - 2
-7x = -1
x = 1/7 (nhận)
Vậy phương trình đã cho có 1 nghiệm
a, d(B;SC) = d(B;(SAC))
Kẻ BH vuông AC
Ta có d(B;(SAC)) = BH
ADHT : \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{2a^2}{a^4}=\dfrac{2}{a^2}\Rightarrow BH=\dfrac{a}{\sqrt{2}}\)
b,
Ta có AB vuông BC
SA vuông BC; AB; SA chứa (SAB)
=> BC vuông (SAB)
Kẻ AK vuông SB => AK là kc giứa (A;(SBC))
=> AK = a/ căn 2
c, Kẻ CD // AB
=> d(AB;SC) = d(AB;(SCD)) = d(A;(SCD))
Kẻ AM vuông CD; SA vuông CD
=> CD vuông (SAM)
Kẻ AG vuông SM => AG là khoảng cách
Xét tứ giác ABCM có AM// BC; AB//MC
=> tg ABCM là hbh => AM = BC = a
Xét tam giác SAM vuông tại A
ADHT \(\dfrac{1}{AG^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AG=\dfrac{a}{\sqrt{2}}\)
`#3107.101107`
`2.`
`c)` $(3x + 2)^2 = \dfrac{25}{49}$
\(\Rightarrow\left(3x+2\right)^2=\dfrac{\left(\pm5\right)^2}{\left(\pm7\right)^2}\\ \left(3x+2\right)^2=\left(\pm\dfrac{5}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+2=\dfrac{5}{7}\\3x+2=-\dfrac{5}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=-\dfrac{9}{7}\\3x=-\dfrac{19}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{7}\\x=-\dfrac{19}{21}\end{matrix}\right.\)
Vậy, \(x\in\left\{-\dfrac{3}{7};-\dfrac{19}{21}\right\}.\)
Hàng nghìn có 4 cách chọn ( Là các số 5, 9, 4, 1)
Hàng trăm có 4 cách chọn (Vì khác nhau nên bỏ 1 số trong 4 số ở hàng nghìn nhưng nhận thêm 0 nên vẫn có 4 cách chọn)
Hàng chục có 3 cách chọn (Tương tự vì khác nhau nên số cách chọn giảm đi 1)
Hàng đơn vị có 2 cách chọn
Vậy lập được: 4x4x3x2=96 (số) thỏa mãn yêu cầu đề bài
Phần mở ngoặc mình giải thích thêm cho bạn dễ hiểu nhé.
Cho 4 chữ số có dạng \(\overline{abcd}\)
Với a khác 0
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
=> 96 cách chọn