cho tam giác ABC vuông tại A , đường cao AH. biết \(\frac{AB}{AC}\)\(=\frac{20}{21}\)và AH = 420 . tính chu vi tam giác ABC
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0,x\ne4\).
Với \(x=7-4\sqrt{3}\):
\(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
\(B=\frac{2}{2-\sqrt{3}-2}=\frac{-2}{\sqrt{3}}=\frac{-2\sqrt{3}}{3}\)
\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{B}{A}=\frac{\frac{2}{\sqrt{x}-2}}{\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\Leftrightarrow x=4\)(loại) \(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6+10\sqrt{5x}\)
\(\Rightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26+6x-10\sqrt{5x}=0\)
\(\Leftrightarrow x+3-4\sqrt{x-1}+5x+25-10\sqrt{5x}=0\)
\(\Leftrightarrow\frac{\left(x+3\right)^2-4\left(x-1\right)}{x+3+4\sqrt{x-1}}+\frac{5\left[\left(x+5\right)^2-\left(2\sqrt{5x}\right)^2\right]}{x+5+2\sqrt{5x}}=0\)
\(\Leftrightarrow\left(x^2-10x+25\right)\left(\frac{1}{x+3+4\sqrt{x-1}}+\frac{5}{x+5+2\sqrt{5x}}\right)=0\)
\(\Leftrightarrow x^2-10x+25=0\)(vì \(x\ge0\))
\(\Leftrightarrow x=5\)(thỏa mãn)
A) Xét ΔHBAΔHBA và ΔABCΔABC có :
ˆBB^ chung ; ˆBAC=ˆBHA=90BAC^=BHA^=90 độ
⇔ΔHBA∞ΔABC(g.g)⇔ΔHBA∞ΔABC(g.g)
B) Xét ΔABEΔABE và ΔACBΔACB có :
ˆAA^ chung
ˆABE=ˆBCAABE^=BCA^( Do BE là phân giác của góc B , mà ˆB=2ˆCB^=2C^)
⇔ΔABE∞ΔACB(g.g)⇔ΔABE∞ΔACB(g.g)
Ta có tỉ lệ : ABAC=AEABABAC=AEAB⇔AB2=AE⋅AC(dpcm)⇔AB2=AE⋅AC(dpcm)
C) ta có tỉ lệ : HBAB=ABBCHBAB=ABBC⇔HB=AB2BC=96=1,5(cm)⇔HB=AB2BC=96=1,5(cm)
Xét ΔBHDΔBHD và ΔBAEΔBAE có :
ˆBHD=ˆBAE=90BHD^=BAE^=90độ
ˆABE=ˆEDHABE^=EDH^( do BE là phân giác của góc B )
⇔ΔBHD∞ΔBAE(g.g)⇔ΔBHD∞ΔBAE(g.g)
Ta có tỉ lệ : BHAB=HDAE=BDBEBHAB=HDAE=BDBE
⇒SBHDSBAE=(BHAB)2=(1,53)2=14
Cái nịt...còn mỗi cái nịt thôi nhá
Lời giải:
Khi x = 1 + √2 thì hàm số y = ax + 1 có giá trị bằng 3 + √2 nên ta có:
3 + √2 = a(1 + √2 ) + 1 ⇔ a(1 + √2 ) = 2 + √2
Vậy a = √2
Bài 21 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm sô y = ax + b biết đồ thị cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ bằng -2.
Lời giải:
Vì đồ thị hàm số y = ax + b cắt trục tung tại điểm có tung độ bằng 2 nên b=2
Vì đồ thị hàm số y = ax + 2 cắt trục hoành tại điểm có hoành độ bằng -2 nên tung độ của giao điểm bằng 0, ta có:
0 = a.(-2) + 2 ⇔ 2a = 2 ⇔ a = 1
Vậy hàm số đã cho là y = x + 2.
Bài 22 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm số trong mỗi trường hợp sau, biết đồ thị của hàm số là đường thẳng đi qua gốc tọa độ:
a. Đi qua điểm A(3; 2)
b. Có hệ số a = 3
c. Song song với đường thẳng y = 3x + 1
Lời giải:
Đồ thị hàm số đi qua gốc tọa độ có dạng y = ax.
a. Đồ thị hàm số đi qua điểm A(3; 2) nên tọa độ A nghiệm đúng phương trình hàm số.
Ta có: 2 = a.3 ⇔ a = 2/3
Vậy hàm số đã cho là y = 2/3.x.
b. Vì a = √3 nên ta có hàm số y = √3 x
c. Đồ thị hàm số y = ax song song với đường thẳng y = 3x + 1 nên a = 3
Vậy hàm số đã cho là y = 3x.
Bài 23 trang 66 Sách bài tập Toán 9 Tập 1: Trên mặt phẳng tọa độ Oxy cho hai điểm A(1; 2), B(3; 4)
a. Tìm hệ số a của đường thẳng đi qua A và B
b. Xác định hàm số biết đồ thị của nó là đường thẳng đi qua A và B
Lời giải:
Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b
a. Đường thẳng đi qua hai điểm A và B nên tọa độ A và B nghiệm đúng phương trình.
Ta có: Tại A: 2 = a + b ⇔ b = 2 – a (1)
Tại B: 4 = 3a + b (2)
Thay (1) và (2) ta có: 4 = 3a + 2 – a ⇔ 2a = 2 ⇔ a = 1
Vậy hệ số a của đường thẳng đi qua A và B là 1.
b. Thay a = 1 vào (1) ta có: b = 2 – 1 = 1
Vậy phương trình đường thẳng AB là y = x + 1
Bài 24 trang 66 Sách bài tập Toán 9 Tập 1: Cho đường thẳng y = (k + 1)x + k (1)
a. Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ
b. Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 1 - √2
c. Tìm giá trị của k để đường thẳng (1) song song với đường thẳng y = (√3 + 1)x + 3
Lời giải:
a. Đường thẳng y = (k + 1)x + k có dạng là hàm số bậc nhất đi qua gốc tọa độ nên k = 0
Vậy hàm số có dạng: y = x
b. Đường thẳng y = ax + b cắt trục tung tại điểm có tung độ bằng b, mà đường thẳng y = (k + 1)x + k cắt trục tung tại điểm có tung độ bằng 1 - √2 nên k = 1 - √2 .
c. Đường thẳng y = (k + 1)x + k song song với đường thẳng y = (√3 +1)x+3 khi và chỉ khi:
Vậy hàm số có dạng: y = (√3 + 1)x + √3 .
ĐK : \(2x^4-8x^2+16=2\left(x^4-4x^2+8\right)=2\left(x^2-2\right)^2+8>0\)
\(\Leftrightarrow2x^4-8x^2+16=8\Leftrightarrow2x^4-8x^2+8=0\)
\(\Leftrightarrow x^4-4x^2+4=0\Leftrightarrow\left(x^2-2\right)^2=0\Leftrightarrow x=\pm2\)
tham khảo câu tl nàu nhé !