K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefinedtham khảo câu tl nàu nhé !

DD
28 tháng 9 2021

ĐK: \(x\ge0,x\ne4\).

Với \(x=7-4\sqrt{3}\):

\(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

\(B=\frac{2}{2-\sqrt{3}-2}=\frac{-2}{\sqrt{3}}=\frac{-2\sqrt{3}}{3}\)

\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{B}{A}=\frac{\frac{2}{\sqrt{x}-2}}{\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\Leftrightarrow x=4\)(loại) \(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6+10\sqrt{5x}\)

\(\Rightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26+6x-10\sqrt{5x}=0\)

\(\Leftrightarrow x+3-4\sqrt{x-1}+5x+25-10\sqrt{5x}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)^2-4\left(x-1\right)}{x+3+4\sqrt{x-1}}+\frac{5\left[\left(x+5\right)^2-\left(2\sqrt{5x}\right)^2\right]}{x+5+2\sqrt{5x}}=0\)

\(\Leftrightarrow\left(x^2-10x+25\right)\left(\frac{1}{x+3+4\sqrt{x-1}}+\frac{5}{x+5+2\sqrt{5x}}\right)=0\)

\(\Leftrightarrow x^2-10x+25=0\)(vì \(x\ge0\)

\(\Leftrightarrow x=5\)(thỏa mãn) 

A) Xét   ΔHBAΔHBA và  ΔABCΔABC có :

ˆBB^ chung     ;     ˆBAC=ˆBHA=90BAC^=BHA^=90  độ

⇔ΔHBA∞ΔABC(g.g)⇔ΔHBA∞ΔABC(g.g)

B)  Xét ΔABEΔABE và ΔACBΔACB có : 

       ˆAA^   chung

      ˆABE=ˆBCAABE^=BCA^( Do BE là phân giác của góc B , mà   ˆB=2ˆCB^=2C^)

⇔ΔABE∞ΔACB(g.g)⇔ΔABE∞ΔACB(g.g)

Ta có tỉ lệ :  ABAC=AEABABAC=AEAB⇔AB2=AE⋅AC(dpcm)⇔AB2=AE⋅AC(dpcm)

C)  ta có tỉ lệ :  HBAB=ABBCHBAB=ABBC⇔HB=AB2BC=96=1,5(cm)⇔HB=AB2BC=96=1,5(cm)

    Xét   ΔBHDΔBHD và  ΔBAEΔBAE có :

              ˆBHD=ˆBAE=90BHD^=BAE^=90độ

              ˆABE=ˆEDHABE^=EDH^( do BE là phân giác của góc B )

    ⇔ΔBHD∞ΔBAE(g.g)⇔ΔBHD∞ΔBAE(g.g)

Ta có tỉ lệ : BHAB=HDAE=BDBEBHAB=HDAE=BDBE

    ⇒SBHDSBAE=(BHAB)2=(1,53)2=14

Cái nịt...còn mỗi cái nịt thôi nhá

28 tháng 9 2021

cho mik xin lỗi mik mới lớp 8 

Lời giải:

Khi x = 1 + √2 thì hàm số y = ax + 1 có giá trị bằng 3 + √2 nên ta có:

3 + √2 = a(1 + √2 ) + 1 ⇔ a(1 + √2 ) = 2 + √2

Vậy a = √2

Bài 21 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm sô y = ax + b biết đồ thị cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ bằng -2.

Lời giải:

Vì đồ thị hàm số y = ax + b cắt trục tung tại điểm có tung độ bằng 2 nên b=2

Vì đồ thị hàm số y = ax + 2 cắt trục hoành tại điểm có hoành độ bằng -2 nên tung độ của giao điểm bằng 0, ta có:

0 = a.(-2) + 2 ⇔ 2a = 2 ⇔ a = 1

Vậy hàm số đã cho là y = x + 2.

Bài 22 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm số trong mỗi trường hợp sau, biết đồ thị của hàm số là đường thẳng đi qua gốc tọa độ:

a. Đi qua điểm A(3; 2)

b. Có hệ số a = 3

c. Song song với đường thẳng y = 3x + 1

Lời giải:

Đồ thị hàm số đi qua gốc tọa độ có dạng y = ax.

a. Đồ thị hàm số đi qua điểm A(3; 2) nên tọa độ A nghiệm đúng phương trình hàm số.

Ta có: 2 = a.3 ⇔ a = 2/3

Vậy hàm số đã cho là y = 2/3.x.

b. Vì a = √3 nên ta có hàm số y = √3 x

c. Đồ thị hàm số y = ax song song với đường thẳng y = 3x + 1 nên a = 3

Vậy hàm số đã cho là y = 3x.

Bài 23 trang 66 Sách bài tập Toán 9 Tập 1: Trên mặt phẳng tọa độ Oxy cho hai điểm A(1; 2), B(3; 4)

a. Tìm hệ số a của đường thẳng đi qua A và B

b. Xác định hàm số biết đồ thị của nó là đường thẳng đi qua A và B

Lời giải:

Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b

a. Đường thẳng đi qua hai điểm A và B nên tọa độ A và B nghiệm đúng phương trình.

Ta có: Tại A: 2 = a + b ⇔ b = 2 – a (1)

Tại B: 4 = 3a + b (2)

Thay (1) và (2) ta có: 4 = 3a + 2 – a ⇔ 2a = 2 ⇔ a = 1

Vậy hệ số a của đường thẳng đi qua A và B là 1.

b. Thay a = 1 vào (1) ta có: b = 2 – 1 = 1

Vậy phương trình đường thẳng AB là y = x + 1

Bài 24 trang 66 Sách bài tập Toán 9 Tập 1: Cho đường thẳng y = (k + 1)x + k (1)

a. Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ

b. Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 1 - √2

c. Tìm giá trị của k để đường thẳng (1) song song với đường thẳng y = (√3 + 1)x + 3

Lời giải:

a. Đường thẳng y = (k + 1)x + k có dạng là hàm số bậc nhất đi qua gốc tọa độ nên k = 0

Vậy hàm số có dạng: y = x

b. Đường thẳng y = ax + b cắt trục tung tại điểm có tung độ bằng b, mà đường thẳng y = (k + 1)x + k cắt trục tung tại điểm có tung độ bằng 1 - √2 nên k = 1 - √2 .

c. Đường thẳng y = (k + 1)x + k song song với đường thẳng y = (√3 +1)x+3 khi và chỉ khi:

Vậy hàm số có dạng: y = (√3 + 1)x + √3 .

28 tháng 9 2021

nhiều quá không viết được

28 tháng 9 2021

ĐK : \(2x^4-8x^2+16=2\left(x^4-4x^2+8\right)=2\left(x^2-2\right)^2+8>0\)

\(\Leftrightarrow2x^4-8x^2+16=8\Leftrightarrow2x^4-8x^2+8=0\)

\(\Leftrightarrow x^4-4x^2+4=0\Leftrightarrow\left(x^2-2\right)^2=0\Leftrightarrow x=\pm2\)