tìm p nguyên tố sao cho 1+p+p^2+p^3+p^4+p^5 chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2-x-12=x2+3x-4x-12=(x2+3x)-(4x+12)=x(x+3)-4(x+3)=(x+3)(x-4)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:
ƯCLN(2013;2014) là 1
vì ƯCLN(2013;2014) là 1 nên để con kiến đi hết tất cả các ô vuông mà mỗi ô chỉ đi qua đường chéo một lần thì con kiến phải đi hết đường chéo của mỗi ô vuông có cạnh 1cm trong 1 hàng ô vuông kề nhau có dạng hình chữ nhật( vì con kiến xuất phát từ A nên nếu con kiến đi theo đường chéo hướng về phía B thì hình chữ nhật có chiều rộng 1cm đó sẽ có chiều dài là 2013 )
nếu con kiến đi hết số đường chéo của mỗi ô vuông trong hình chữ nhật có chiều rộng 1cm và chiều dài 2013 cm đã nêu ở đề bài thì con kiến phải đi theo hình ziczac nối tiếp
con kiến xuất phát từ A nên trong ô thứ nhất đường chéo mà con kiến đi có dạng "/" tiếp đến ô thứ 2 thì con kiến đi theo đường chéo có dạng :"\"
cứ tiếp tục như vậy đến ô cuối cùng con kiến sẽ ở ô thứ 2013 và đi trên đường cheo có dạng như ô thứ nhất( từ A đến B) ( vì ở đây có 2 dạng đường chéo và có 2 loại ô số là ô số chẵn và ô số lẻ mà ô thứ nhất có đường chéo dang "/" => ô thứ 2013 có dạng đường chéo mà con kiến đi qua cũng là "/"
vì đường chéo ở ô 2013(chiều từ A đến C) ở hàng thứ 1(chiều tứ A đếnD) có dạng "/" mà trong ô vuông C
đó thì đường chéo mà con kiến đi qua không đi qua điểm C nên con kiến ko đi qua điểm C
ta có đường chéo ở ô thứ nhất ( từ C về A) ở hàng thứ 2( từ A đến D) có dạng :"\"
tương tự như hàng thứ nhất ( từ A đến D) ở cách chứng minh trên thì ở hàng thứ 2( từ A về D) cũng có đường chéo ở ô thứ 1 giống đường chéo ở ô thứ 2013 và là:"\"
ở chiều dọc (tức chiều từ A đến D) có 2014 ô nên cácx đường chéo ở ô thứ 2 giống các đường chéo ở ô thứ 2014 và có dạng( từ D đến C): \/\/\/\/..../\/\
vì ở đường chéo đầu ở ô thứ 2( chiều từ A đến D) và ở ô thứ nhất ( chiều từ A đến C) có dạng "\" nên => trong hàng thứ 2014 ( chiều từ A đến D) ô thứ 1 thì đường đi của con kiến trong ô vuông có dạng "\" mà điểm D nằm ở đỉnh phía trên cùng bên trái của ô vuông nên => con kiến đi qua điểm D
vì ở ô thứ 2013(chiêu từ D đến C) ở hàng thứ 2014 (chiều từ A đến D) có đường chéo có dạng giống như đường chéo ở ô thứ 1 là"\" mà điểm C nằm ở đỉnh trên cùng phía bên phải mà đường chéo con kiến đi qua có dạng "\" 2 đầu đường chéo lân lượt nằm ở dỉnh dưới cùng phía bên phải và đỉnh trên cùng phía bên trái => đường chéo mà con kiến đi qua không đi qua điểm C
vậysau khi đi qua tất cả các ô vuông mà mỗi ô đi qua 1 đường chéo thì trong 3 điểm B;C;D thì con kiến đi qua điểm D
giải phương trình
a,(11⋅2+12⋅3+13⋅4+19⋅1011⋅2+12⋅3+13⋅4+19⋅10)(x-1)+110x110x=x−910x−910
b,x+11+2x+33+3x+55+20x+3939=22+43+65+4039x+11+2x+33+3x+55+20x+3939=22+43+65+4039
c,(x-10)+(x-19)+(x-18)+...+100+101=101
d,(11⋅51+12⋅52+13⋅53+...+110⋅6011⋅51+12⋅52+13⋅53+...+110⋅60)x=11⋅11+11⋅12+11⋅13
![](https://rs.olm.vn/images/avt/0.png?1311)
n3 - n
= n ( n2 - 1)
= ( n - 1 ) n (n + 1)
Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n
Nhớ ủg hộ mk nha pn
Đặt p^4+p^3+p^2+p+1 = n^2
Ta có;
* 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**]
* 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***]
Từ [**] và [***], suy ra;
4n^2 = ( 2p^2 + p + 1 )^2
Suy ra; 2n = 2p^2 + p + 1
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra;
p^2 - 2p - 3 = 0
tương đương; ( p + 1 )( p - 3 ) = 0
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn.
Vậy; số nguyên tố cần tìm là 3.
có thêm p^5 nữa bạn ạ