Giải phương trình:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{3}+\frac{5x+2}{2}=\frac{3x-5}{6}\)
\(\Leftrightarrow\)\(\frac{2\left(2x-1\right)+3\left(5x+2\right)}{6}=\frac{3x-5}{6}\)
\(\Rightarrow\)\(2\left(2x-1\right)+3\left(5x+2\right)=3x-5\)
\(\Leftrightarrow\)\(4x-2+15x+6=3x-5\)
\(\Leftrightarrow\)\(4x-2+15x+6-3x+5=0\)
\(\Leftrightarrow\)\(16x+9=0\)
\(\Leftrightarrow\)\(16x=-9\)
\(\Leftrightarrow\)\(x=\frac{-9}{16}\)
\(2016^{2016}\equiv3^{2016}\left(mod11\right)\)
\(3^{2016}=\left(3^5\right)^{403}.3=243^{403}.3\equiv1^{403}.3\left(mod11\right)\equiv3\left(mod11\right)\)
\(P=\left(\frac{1}{x}+\frac{1}{y}\right).\sqrt{1+x^2y^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{x}.\frac{1}{y}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{xy}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2\sqrt{\frac{1}{xy}+xy}\)
Đặt \(xy=t\)
\(\rightarrow P>2\sqrt{\frac{1}{t}+t}\)
Ta có :
\(1>x+y>2\sqrt{xy}\)
\(\rightarrow\sqrt{xy}< \frac{1}{2}\)
\(\rightarrow xy< \frac{1}{4}\)
\(\rightarrow t< \frac{1}{4}\)
Lại có :
\(\frac{1}{t}+t=\frac{15}{16t}+\left(\frac{1}{16}+t\right)\)
\(\rightarrow\frac{1}{t}+t>\frac{15}{16.\frac{1}{4}}+2\sqrt{\frac{1}{16}.t}\)
\(\rightarrow\frac{1}{t}+t>\frac{17}{4}\)
\(\rightarrow B>2.\sqrt{\frac{17}{4}}\)
\(\rightarrow B>\sqrt{17}\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(ĐKXĐ:\)\(x\ne0,x\ne2\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\)\(\frac{x\left(x+2\right)-1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow\)\(x\left(x+2\right)-1\left(x-2\right)=2\)
\(\Leftrightarrow\)\(x^2+2x-x+2=2\)
\(\Leftrightarrow\)\(x^2+x+2-2=0\)
\(\Leftrightarrow\)\(x^2+x=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(KTMĐKXĐ\right)\\x=1\left(TMĐKXĐ\right)\end{cases}}\)
Vậy.....