Mỗi cặp đơn thức sau đây có đồng dạng không? Nếu có, hãy tìm tổng và hiệu của chúng.
a) xy và -6xy
b) 2xy và xy2
c) -4yzx2 và 4x2yz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn thức :
a) 3xy2z ; 3 và 1/2 ; 10x/3y
b) 4/3 x2yz ; 2018 ; xy2/3 ; 2 xy/z
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\) thì ta có \(x+y+z=0\). Điều kiện đã cho tương đương \(x^2+y^2+z^2=\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2=2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=4\left(xy+yz+zx\right)\)
\(\Leftrightarrow4\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)
\(\Leftrightarrow x=y=z=0\)
\(\Leftrightarrow a-b=b-c=c-a=0\)
\(\Leftrightarrow a=b=c\)
Ta có đpcm
Lời giải:
Đặt $a-b=x; b-c=y, c-a=z$ thì $x+y+z=0$.
ĐKĐB tương đương với:
$x^2+y^2+z^2=(y-z)^2+(z-x)^2+(x-y)^2$
$\Leftrightarrow x^2+y^2+z^2=2(x^2+y^2+z^2)-2(xy+yz+xz)$
$\Leftrightarrow x^2+y^2+z^2=2(xy+yz+xz)$
$\Leftrightarrow 2(x^2+y^2+z^2)=x^2+y^2+z^2+2(xy+yz+xz)$
$\Leftrightarrow 2(x^2+y^2+z^2)=(x+y+z)^2=0$
$\Rightarrow x=y=z=0$
$\Leftrightarrow a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$ (ta có đpcm)
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\\ < =>\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\\ < =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Vì : \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\forall a,b,c\in R\\ =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
Do vậy (1) xảy ra khi : \(a-1=b-1=c-1=0< =>a=b=c=1\) (DPCM)
\(a^2+b^2+c^2+3=2\cdot\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)\left(b^2-2b-1\right)\left(c^2-2c-1\right)+3=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Với mọi \(a,b,c\) thì: \(\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0;\left(c-1\right)^2\ge0\)
Do đó: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
Để: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (ta giải tìm a,b,c)
\(\Leftrightarrow a=b=c=1\)
\(\left(-5x^2\right)y^2.\dfrac{1}{5}xy\)
\(=\left(-5x^2y^2\right).\dfrac{1}{5}xy\)
\(=-x^3y^3\)
`@` `\text {Ans}`
`\downarrow`
\(3(x^2+2x-3)+3(-x^2-4x)\)
`= 3*(x^2+2x-3 - x^2 - 4x)`
`= 3*[(x^2-x^2)+(2x-4x)-3]`
`= 3*(-2x-3)`
`= -6x-9`
3(x² + 2x - 3) + 3(-x² - 4x)
= 3x² + 6x - 9 - 3x² - 12x
= (3x² - 3x²) + (6x - 12x) - 9
= -6x - 9
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
1. B (nếu gạch chữ "a")
2. C (nếu gạch chữ "e")
3. D (nếu gạch chữ "u")
4. D (nếu gạch "ou")
5. C (nếu gạch chữ "c")
a) Có đồng dạng
`xy+(-6xy)=-5xy`
`xy-(-6xy)=7xy`
b) Không đồng dạng
c) Có đồng dạng
`-4yzx^{2}+4x^{2}yz=0`
`-4yzx^{2}-4x^{2}yz=-8x^{2}yz`
a) Có đồng dạng
`xy+(-6xy)=-5xy`
`xy-(-6xy)=7xy`
b) Không đồng dạng
c) Có đồng dạng
`-4yzx^2+4x^2yz=0`
`-4yzx^{2}-4x^2yz=-8x^2yz