Cho góc xAy < 90°. Trên tia Ax lấy 2 điểm B và C (AB<AC). Trên tia Ay lấy 2 điểm D và E sao cho BD//CE. Giả sử AB=6cm, BC=9cm, DE=3cm. Tính AC và AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)
<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)
=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
<=> \(-12x=12\)
<=> \(x=-1\left(TMĐK\right)\)
Vậy: ...
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)
\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow\)\(12=\left(-6x\right).2\)
\(\Leftrightarrow\)\(12=-12x\)
\(\Leftrightarrow\)\(x=-1\)
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)
\(a,\)\(\frac{9}{16}-\frac{3}{8}\)\(=\frac{9}{16}-\frac{6}{16}=\frac{3}{16}\)
\(b,\)\(\frac{5}{9}\times\frac{3}{8}=\frac{5\times3}{3\times3\times8}=\frac{5}{24}\)
\(c,\)\(\frac{5}{6}+\frac{9}{12}\div\frac{18}{5}\)\(=\frac{5}{6}+\frac{9}{12}\times\frac{5}{18}\)\(=\frac{5}{6}+\frac{9\times5}{12\times2\times9}\)\(=\frac{5}{6}+\frac{5}{24}\)\(=\frac{20}{24}+\frac{5}{24}=\frac{25}{24}\)
\(d,\)\(\frac{1}{2}\div\frac{1}{2}\div\frac{1}{2}\)\(=1\div\frac{1}{2}=1\times2=2\)
\(\Leftrightarrow\)5 - x + 6 = 12-8x
\(\Rightarrow5-x+6-12+8x=0\)
\(\Leftrightarrow\left(5+6-12\right)+\left(-x+8x\right)=0\)
\(\Leftrightarrow-1+7x=0\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(PT\Leftrightarrow\left|5-3x\right|=x+6\left(Đk:x\ge-6\right)\)
\(\Leftrightarrow\orbr{\begin{cases}5-3x=x+6\\5-3x=-x-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\left(TMĐK\right)\\x=\frac{11}{2}\left(TMĐK\right)\end{cases}}\)
Vậy: ...
cjhiuj