d\(\dfrac{13}{27}và\dfrac{27}{41}\) đ\(\dfrac{1119}{1999}và\dfrac{1999}{2000}\) c\(\dfrac{1}{a+1}và\dfrac{1}{a-1}\) a\(\dfrac{14}{25}và\dfrac{5}{7}\) Tất cả đều so sánh bằng cách hợp lý nhất nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x+1\dfrac{1}{3}\right)=\left(\dfrac{-1}{2}\right)^2\cdot\dfrac{2}{3}\\ 2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{4}\cdot\dfrac{2}{3}\\ 2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{6}\\ x+\dfrac{4}{3}=\dfrac{1}{6}:2\\ x+\dfrac{4}{3}=\dfrac{1}{12}\\ x=\dfrac{1}{12}-\dfrac{4}{3}\\ x=-\dfrac{15}{12}=\dfrac{-5}{4}\)
\(2\left(x+1\dfrac{1}{3}\right)=\left(-\dfrac{1}{2}\right)^2\cdot\dfrac{2}{3}\)
=>\(2\left(x+\dfrac{4}{3}\right)=\dfrac{1}{4}\cdot\dfrac{2}{3}=\dfrac{1}{6}\)
=>\(x+\dfrac{4}{3}=\dfrac{1}{12}\)
=>\(x=\dfrac{1}{12}-\dfrac{4}{3}=\dfrac{1}{12}-\dfrac{16}{12}=-\dfrac{15}{12}=-\dfrac{5}{4}\)
Số vịt ban đầu là:
20456-12650=7806(con)
Số gà ban đầu là:
12650-7806=4844(con)
\(\left(-\dfrac{3}{5}\right)^2-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(\dfrac{9}{25}-\left(x-\dfrac{1}{3}\right)=\dfrac{4}{25}\)
=>\(x-\dfrac{1}{3}=\dfrac{9}{25}-\dfrac{4}{25}=\dfrac{5}{25}=\dfrac{1}{5}\)
=>\(x=\dfrac{1}{5}+\dfrac{1}{3}=\dfrac{8}{15}\)
a: Quy luật là số sau bằng số trước cộng thêm 3 đơn vị
b: B={2;5;8;11;14;17;20;23;26;29}
a: Quy luật là số trước cộng thêm 3 đơn vị thì ra số sau.
b: B={2;5;8;11;14;17;20;23;26;29}
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2+AB^2=10^2\)
=>\(2\cdot AB^2=100\)
=>\(AB^2=50\)
=>\(AB=\sqrt{50}=5\sqrt{2}\left(cm\right)\)
`x- \left(\frac54-\frac75 \right)=\frac{9}{20}`
`\Rightarrow x-\frac{-3}{20}=\frac{9}{20}`
`\Rightarrow x=\frac{9}{20}+\frac{-3}{20}`
`\Rightarrow x=\frac{3}{10}`
\(x-\left(\dfrac{5}{4}-\dfrac{7}{5}\right)=\dfrac{9}{20}\)
=>\(x-\dfrac{25-28}{20}=\dfrac{9}{20}\)
=>\(x+\dfrac{3}{20}=\dfrac{9}{20}\)
=>\(x=\dfrac{9}{20}-\dfrac{3}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)
a: \(-0,7< \dfrac{-13}{19}< -0,6\)
\(\dfrac{19}{-23}< -0,8\)
mà -0,8<-0,7
nên \(\dfrac{19}{-23}< -\dfrac{13}{19}\)
b: \(\dfrac{1}{83}:\dfrac{6}{331}=\dfrac{1}{83}\cdot\dfrac{331}{6}=\dfrac{331}{498}< 1\)
=>\(\dfrac{1}{83}< \dfrac{6}{331}\)
=>\(\dfrac{1}{83}+1< \dfrac{6}{331}+1\)
=>\(\dfrac{84}{83}< \dfrac{337}{331}\)
=>\(\dfrac{84}{-83}>\dfrac{-337}{331}\)
d: \(\dfrac{13}{27}< \dfrac{13}{26}=\dfrac{1}{2}\)
\(\dfrac{1}{2}=\dfrac{20,5}{41}< \dfrac{27}{41}\)
Do đó: \(\dfrac{13}{27}< \dfrac{27}{41}\)
c: a+1>a-1
=>\(\dfrac{1}{a+1}< \dfrac{1}{a-1}\)
a: \(\dfrac{14}{25}=0,56;\dfrac{5}{7}=0,\left(714285\right)\)
mà 0,56<0,(714285)
nên \(\dfrac{14}{25}< \dfrac{5}{7}\)
a)
\(\dfrac{14}{25}< \dfrac{14}{21}=\dfrac{2}{3}\)
\(\dfrac{15}{21}>\dfrac{14}{21}\) hay \(\dfrac{5}{7}>\dfrac{2}{3}\)
\(\dfrac{14}{25}< \dfrac{5}{7}\)
c) \(a+1>a-1\)
\(\dfrac{1}{a+1}< \dfrac{1}{a-1}\)
đ) \(\dfrac{1119}{1999}=1-\dfrac{880}{1999};\dfrac{1999}{2000}=1-\dfrac{1}{2000}\)
Mà: \(\dfrac{880}{1999}>\dfrac{1}{2000}\) (vì 1999 < 2000 và 880 > 1)
\(1-\dfrac{880}{1999}< 1-\dfrac{1}{2000}\)
\(\dfrac{1119}{1999}< \dfrac{1999}{2000}\)
d) Ta có:
\(\dfrac{13}{27}< \dfrac{13,5}{27}=\dfrac{1}{2}\)
\(\dfrac{27}{41}>\dfrac{20,5}{41}=\dfrac{1}{2}\)
\(\dfrac{13}{27}< \dfrac{27}{41}\)