Tìm các giá trị của x, y thỏa mãn :
| 2x - 27 |2011 + ( 3y + 10 )2012=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}.\)
Để \(3+\frac{5}{n-1}\)là gt nguyên \(\Rightarrow\frac{5}{n-1}\)là gt nguyên
\(\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
Để A là số nguyên thì \(3n+2⋮n-1\)
Ta có: \(3n+2=3\left(n-1\right)+5\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow\)Để \(3n+2⋮n-1\)thì \(5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
Vậy \(n\in\left\{-4;0;2;6\right\}\)
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c)
góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
A=[3^2 * (-1/2)^3]^2 A=[9*(-0/5)^3]^2
A=[9*(-0,125)]^2
A=(-1,125)^2
A=1,265625
B= 0,00018/0,0000012
B=15
\(P=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(P=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{100-98}{98.99.100}\)
\(\Rightarrow2P=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(\Rightarrow2P=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow P=\left(\frac{1}{2}-\frac{1}{9900}\right)\div2\)
\(\Rightarrow P=\frac{4949}{9900}\cdot\frac{1}{2}=\frac{4949}{19800}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2A=\frac{1}{1.2}-\frac{1}{99.100}\)
\(2A=\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
Bài 1:
nếu x1<x2=>2018.x1-3<2018.x2
=>f(x1)<f(x2)
Bài 2:
nếu x dương=>100x2+2 dương
nếu x âm=>100x2+2 dương vì x2 luôn dương
=>f(x)=f(-x)
Bài 3:
nếu x1<x2=>-2019x1+1<2019x2+1
=>f(x1)<f(x2)
Ta thấy \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\)với mọi x
\(\left(3y+10\right)^{2012}\ge0\)với mọi y
Suy ra \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)với mọi x,y
Mà \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Khi đó \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy.....
Ta có : \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0}\)
Mà \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=27\\3y=-10\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)