K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2024

(3 + x).2 - 47 = -147

(3 + x).2 = -147 + 47 

(3 + x).2= - 100 

3 + x = -100 : 2 

3 + x = -50

x = -50 - 3 

x = -53

\(\left(3+x\right)\cdot2-47=-147\)

=>\(2\left(x+3\right)=-147+47=-100\)

=>x+3=-50

=>x=-53

10.000 đồng + 30.000 đồng = 40000 đồng

2.000 đồng + 12.000 đồng = 14000 đồng

30 triệu đồng - 10 triệu đồng =20 triệu đồng

19 tháng 6 2024

40.000 đồng

14.000 đồng

20 triệu đồng

a: \(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)

=>\(3\left(2x+1\right)=5\left(x-3\right)\)

=>6x+3=5x-15

=>6x-5x=-3-15

=>x=-18

b: \(\dfrac{x+1}{22}=\dfrac{6}{x}\)(ĐKXĐ: \(x\ne0\))

=>\(x\left(x+1\right)=6\cdot22\)

=>\(x^2+x-132=0\)

=>(x+12)(x-11)=0

=>\(\left[{}\begin{matrix}x+12=0\\x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-12\left(nhận\right)\\x=11\left(nhận\right)\end{matrix}\right.\)

c: \(\dfrac{2x-1}{2}=\dfrac{5}{x}\)(ĐKXĐ: \(x\ne0\))

=>\(x\left(2x-1\right)=5\cdot2\)

=>\(2x^2-x-10=0\)

=>\(2x^2-5x+4x-10=0\)

=>x(2x-5)+2(2x-5)=0

=>(2x-5)(x+2)=0

=>\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(nhận\right)\\x=-2\left(nhận\right)\end{matrix}\right.\)

DT
19 tháng 6 2024

a) \(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \Rightarrow5\left(x-3\right)=3\left(2x+1\right)\\ \Rightarrow5x-15=6x+3\\ \Rightarrow6x-5x=-15-3\\ \Rightarrow x=-18\)

b) \(\dfrac{x+1}{22}=\dfrac{6}{x}\left(x\ne0\right)\\ \Rightarrow x\left(x+1\right)=6.22\\ \Rightarrow x^2+x=132\\ \Rightarrow x^2+x-132=0\\ \Rightarrow\left(x^2+12x\right)-\left(11x+132\right)=0\\ \Rightarrow x\left(x+12\right)-11\left(x+12\right)=0\\ \Rightarrow\left(x+12\right)\left(x-11\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+12=0\\x-11=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-12\\x=11\end{matrix}\right.\left(TM\right)\)

c) \(\dfrac{2x-1}{2}=\dfrac{5}{x}\left(x\ne0\right)\\ \Rightarrow x\left(2x-1\right)=2.5\\ \Rightarrow2x^2-x-10=0\\ \Rightarrow\left(2x^2+4x\right)-\left(5x+10\right)=0\\ \Rightarrow2x\left(x+2\right)-5\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{2}\end{matrix}\right.\left(TM\right)\)

 

 

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)

\(B=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{85\cdot89}\)

\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{85}-\dfrac{1}{89}\)

\(=1-\dfrac{1}{89}=\dfrac{88}{89}\)

\(C=\dfrac{7}{10\cdot11}+\dfrac{7}{11\cdot12}+...+\dfrac{7}{69\cdot70}\)

\(=7\left(\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}+...+\dfrac{1}{69\cdot70}\right)\)

\(=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{42}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(D=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)

19 tháng 6 2024

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}\)

\(=\dfrac{2023}{2024}\)

\(B=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{85\cdot89}\)

\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{85}-\dfrac{1}{89}\)

\(=1-\dfrac{1}{89}\)

\(=\dfrac{88}{89}\)

\(C=\dfrac{7}{10\cdot11}+\dfrac{7}{11\cdot12}+...+\dfrac{7}{69\cdot70}\)

\(=7\left(\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}+...+\dfrac{1}{69\cdot70}\right)\)

\(=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

\(=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)

\(=7\cdot\dfrac{6}{70}\)

\(=\dfrac{3}{5}\)

\(D=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)

\(=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+\dfrac{1}{9\cdot12}+...+\dfrac{1}{30\cdot33}\)

\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{6}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{3}\cdot\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\\ =\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)

a: x-y=2(x+y)

=>x-y=2x+2y

=>-x=3y

\(x-y=x:y\)

=>\(-3y-y=\dfrac{-3y}{y}=-3\)

=>\(y=\dfrac{3}{4}\)

=>\(x=-3y=-\dfrac{9}{4}\)

 

19 tháng 6 2024

b) \(x+y=xy=\dfrac{x}{y}\) 

Ta có: \(xy=\dfrac{x}{y}\Rightarrow xy^2=x\Rightarrow y^2=1\Rightarrow y=\pm1\) 

\(y=1\Rightarrow x+1=1\cdot x\Rightarrow1=0\) (vô lý) 

\(y=-1\Rightarrow x+\left(-1\right)=\left(-1\right)\cdot x\)

\(\Rightarrow x-1=-x\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\) 

Vậy: ... 

\(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)

\(\dfrac{1}{5^2}>\dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{6^2}>\dfrac{1}{6\cdot7}=\dfrac{1}{6}-\dfrac{1}{7}\)

...

\(\dfrac{1}{100^2}>\dfrac{1}{100\cdot101}=\dfrac{1}{100}-\dfrac{1}{101}\)

Do đó: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

=>\(\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}\)

mà 1/5>1/6

nên \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{6}\)

Do đó: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)

Gọi độ dài quãng đường từ thư viện đến trường là x(m)

(Điều kiện: x>0)

Thời gian Qiqi đi từ thư viện đến trường là \(\dfrac{x}{60}\left(phút\right)\)

Thời gian Weiling đi từ thư viện đến trường là \(\dfrac{x}{72}\left(phút\right)\)

Weiling đến trường trước Qiqi 4 phút và xuất phát sau 2 phút nên ta có: \(\dfrac{x}{60}-\dfrac{x}{72}=4+2=6\)

=>\(\dfrac{x}{360}=6\)

=>\(x=6\cdot360=2160\left(nhận\right)\)

Vậy: độ dài quãng đường từ thư viện đến trường là 2160(m)

DT
19 tháng 6 2024

Nếu đi từ thư viện đến trường, thời gian Weiling hoàn thành nhanh hơn Qiqi là:

   4 + 2 = 6 (phút)

Tỉ lệ vận tốc Qiqi so với Weiling là: \(\dfrac{60}{72}=\dfrac{5}{6}\)

Cùng một quãng đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau

Do đó tỉ lệ thời gian hoàn thành quãng đường Qiqi so với Weiling là: \(\dfrac{6}{5}\)

Coi thời gian Qiqi đi là 6 phần, Weiling đi là 5 phần

Hiệu số phần bằng nhau:

  6 - 5 = 1 (phần)

Thời gian Qiqi đi là:

  6 : 1 x 6 = 36 (phút)

Quãng đường từ thư viện đến trường là:

  36 x 60 = 2160 (m)

        Đáp số: 2160m

\(3x^3-14x^2+4x+3\)

\(=3x^3+x^2-15x^2-5x+9x+3\)

\(=x^2\left(3x+1\right)-5x\left(3x+1\right)+3\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x^2-5x+3\right)\)

Gọi hai số cần tìm là a,b

Theo đề, ta có: \(\dfrac{a}{b}=\dfrac{7}{12}\)

=>\(\dfrac{a}{7}=\dfrac{b}{12}\)

=>12a=7b

=>12a-7b=0(1)

Thêm 10 đơn vị vào số thứ nhất thì tỉ số giữa chúng là 3/4 nên \(\dfrac{a+10}{b}=\dfrac{3}{4}\)

=>4(a+10)=3b

=>4a+40=3b

=>4a-3b=-40(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}12a-7b=0\\4a-3b=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12a-7b=0\\12a-9b=-120\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12a-7b-12a+9b=0-\left(-120\right)\\12a=7b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=60\\12a=7\cdot60=420\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=35\\b=60\end{matrix}\right.\)

Tổng của hai số là 35+60=95

19 tháng 6 2024

95 nha

 

19 tháng 6 2024

+, Với \(a=0;b\ne c\ne0\), khi đó:

\(0^2=b^5-b^4c\)

\(\Rightarrow b^4\left(b-c\right)=0\)

\(\Rightarrow b-c=0\) (vì \(b\ne0\))

\(\Rightarrow b=c\) (loại)

+, Với \(b=0;a\ne c\ne0\), khi đó:

\(a^2=0^5-0^4.c\)

\(\Rightarrow a^2=0\Rightarrow a=0\) (loại)

+, Với \(c=0;a\ne b\ne0\), khi đó: 

\(a^2=b^5-b^4.0\)

\(\Rightarrow a^2=b^5\) 

Mà trong ba số a, b, c có 1 số dương, 1 số âm và 1 số bằng 0 nên ta có các TH sau:

*) Nếu \(a>0;b< 0\) thì:

\(a^2>0;b^5< 0\Rightarrow a^2\ne b^5\) (loại)

*) Nếu \(a< 0;b>0\Rightarrow a^2>0;b^5>0\) (tm)

Vậy số 0 là c; số dương là b; số âm là a.