vẽ hình luôn dk ạ mih cần đoạn vẻ hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ CM//a và DN//bB(CM và Aa nằm cùng phía với nửa mặt phẳng chứa tia AC, DN và Bb nằm khác phía với nửa mặt phẳng chứa tia DB
CM//Aa
=>\(\widehat{MCA}=\widehat{A_1}\)
Ta có: CM//a
DN//b
mà a//b
nên CM//DN//a//b
CM//DN
=>\(\widehat{MCD}=\widehat{CDN}\)
DN//Bb
=>\(\widehat{NDB}=\widehat{B_1}\)
Ta có: \(\widehat{ACD}=\widehat{ACM}+\widehat{CDM}=\widehat{CDN}+\widehat{B_1}\)
\(\widehat{CDB}=\widehat{CDN}+\widehat{NDB}=\widehat{CDN}+\widehat{B_1}\)
Do đó: \(\widehat{ACD}=\widehat{CDB}\)
Gọi F là giao điểm của Cy với AB
Bx//Cy
=>\(\widehat{BFC}=\widehat{xBC}\)(hai góc so le trong)
=>\(\widehat{BFC}=120^0\)
Ta có: \(\widehat{BFC}+\widehat{AFC}=180^0\)(hai góc kề bù)
=>\(\widehat{AFC}+120^0=180^0\)
=>\(\widehat{AFC}=60^0\)
Ta có: \(\widehat{ACF}+\widehat{ACy}=180^0\)(hai góc kề bù)
=>\(\widehat{ACF}+100^0=180^0\)
=>\(\widehat{ACF}=80^0\)
Xét ΔACF có \(\widehat{AFC}+\widehat{ACF}+\widehat{CAF}=180^0\)
=>\(\widehat{BAC}=180^0-60^0-80^0=40^0\)
Bài 5
a) Do Oc nằm giữa hai tia Oa và Ob nên
∠aOc + ∠cOb = ∠aOb
⇒ ∠cOb = ∠aOb - ∠aOc
= 100⁰ - 40⁰
= 60⁰
b) Do Od là tia phân giác của ∠cOb (gt)
⇒ ∠cOd = ∠cOb : 2
= 60⁰ : 2
= 30⁰
Xét 2 ΔABO và ΔADO ta có:
\(\widehat{BAO}=\widehat{DAO}\) (AD là phân giác của góc BAC)
\(OA\) chung
\(\widehat{AOB}=\widehat{AOD}\left(gt\right)\)
\(=>\Delta ABO=\Delta ADO\left(g.c.g\right)\)
\(=>\widehat{B}=\widehat{D_1}\) (hai góc tương ứng)
ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}=100^0\)
AD là phân giác góc ngoài tại đỉnh A
=>\(\widehat{CAD}=\dfrac{180^0-\widehat{BAC}}{2}=40^0\)
=>\(\widehat{CAD}=\widehat{ACB}\left(=40^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(2\cdot\left(\widehat{OBC}+\widehat{OCB}\right)=90^0\)
=>\(\widehat{OBC}+\widehat{OCB}=45^0\)
Xét ΔOBC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
=>\(\widehat{BOC}+45^0=180^0\)
=>\(\widehat{BOC}=135^0\)
\(\widehat{A}=180^o-\widehat{B}-\widehat{C}=180^o-40^o-40^o=100^o\)
=> \(\widehat{A_{ngoai}}=180^o-100^o=80^o\)
=> \(\widehat{DAB}=\dfrac{1}{2}\widehat{A_{ngoai}}=\dfrac{1}{2}\cdot80^o=40^o\)
Ta có: \(\widehat{DAB}=\widehat{ABC}\left(=40^o\right)\)
Mà 2 góc này ở vị trí so le trong
=> AD//BC
Bài 5:
a) Oc nằm giữa Oa và Ob
=> \(\widehat{aOb}=\widehat{aOc}+\widehat{cOb}\)
\(=>\widehat{cOb}=\widehat{aOb}-\widehat{aOc}=100^o-40^o=60^o\)
b) Od là phân giác của \(\widehat{cOb}\)
=> \(\widehat{cOd}=\widehat{dOb}\)
Mà: \(\widehat{cOd}+\widehat{dOb}=\widehat{cOb}=>2\widehat{cOd}=60^o\)
\(=>\widehat{cOd}=\dfrac{60^o}{2}=30^o\)
6:
Ta có: \(\widehat{xOy}+\widehat{zOy}=180^0\)
=>\(\widehat{zOy}=180^0-60^0=120^0\)
Om là phân giác của góc xOy
=>\(\widehat{yOm}=\dfrac{\widehat{xOy}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: On là phân giác của góc yOz
=>\(\widehat{yOn}=\dfrac{\widehat{yOz}}{2}=\dfrac{120^0}{2}=60^0\)
\(\widehat{mOn}=\widehat{yOm}+\widehat{yOn}=30^0+60^0=90^0\)
a: Góc so le trong với \(\widehat{BAC}\) là góc ACD
b: Góc so le trong với \(\widehat{DAC}\) là góc BCA
Bài 2:
Vì \(\widehat{xOz}< \widehat{xOy}\left(50^0< 80^0\right)\)
nên tia Oz nằm giữa hai tia Ox,Oy
=>\(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)
=>\(\widehat{yOz}=80^0-50^0=30^0\)
Bài 4:
Ta có: \(\widehat{xEy}+\widehat{xEy'}=180^0\)(hai góc kề bù)
=>\(\widehat{xEy'}=180^0-50^0=130^0\)
Ta có: \(\widehat{xEy}=\widehat{x'Ey'}\)(hai góc đối đỉnh)
mà \(\widehat{xEy}=50^0\)
nên \(\widehat{x'Ey'}=50^0\)
Ta có: \(\widehat{xEy'}=\widehat{x'Ey}\)(hai góc đối đỉnh)
mà \(\widehat{xEy'}=130^0\)
nên \(\widehat{x'Ey}=130^0\)