tính a, ( 1/5)25 . ( 1/5)30 b , (1/16)3 : (1/8)2 d, (x3)2:(x2)3(x≠0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{3}+\dfrac{1}{6}\right)\cdot2^{x+4}-2^x=2^{13}-2^{10}\)
\(\Rightarrow\dfrac{1}{2}\cdot2^{x+4}-2^x=2^{13}-2^{10}\)
\(\Rightarrow2^{x+3}-2^x=2^{13}-2^{10}\)
\(\Rightarrow x+3=13;x+0=10\)
\(\Rightarrow x=10\)
(\(\dfrac{1}{3}\) +\(\dfrac{1}{6}\) ) . 2x+4 - 2x = 213 - 210
(\(\dfrac{2}{6}\) + \(\dfrac{1}{6}\)) . \(2^{x+4}\) - \(2^x\) = 8192 - 1024
\(\dfrac{3}{6}\) . 2x . \(2^4\) -\(2^x\) = 7168
8 . 2x - 2x . 1 = 7168
2x . ( 8 - 1 ) = 7168
2x . 7 = 7168
2x = 7168 : 7
2x = 1024
2x = \(2^{10}\)
⇒ x = 10
`@` `\text {Ans}`
`\downarrow`
\((6x-5)(x+8)-(3x-1)(2x+3)-9(4x-3)\)
`= 6x(x+8) - 5(x+8) - [ 3x(2x+3) - 2x - 3] - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 9x - 2x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 7x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - 6x^2 - 7x + 3 - 36x + 27`
`= (6x^2 - 6x^2) + (48x - 5x - 7x - 36x) + (-40 + 3 + 27)`
`= 0 + 0 - 10`
`= - 10`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến
32 < 211 < 128 ( xem lại đề bài em nhé)
4< 2N < 216
\(\dfrac{4}{2}< \) N < \(\dfrac{216}{2}\)
2 < N < 108
vì N \(\in\) Z nên N \(\in\) { 3; 4; 5; 6; 7;...; 107}
`@` `\text {Ans}`
`\downarrow`
`-1/27 = ( (-1)^3/(-3)^3) =(-1/3)^3`
`8/729 = ( (2^3)/(9^3) ) = (2/9)^3`
`16/685 = ( (4^2)/( \sqrt {685}) ) = (4/(\sqrt {685}) )^2`
(\(x\) + 1)2 = \(\dfrac{4}{25}\)
(\(x+1\))2 = (\(\dfrac{2}{5}\))2
\(\left[{}\begin{matrix}x+1=-\dfrac{2}{5}\\x+1=\dfrac{2}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\){ \(-\dfrac{7}{5}\) ; - \(\dfrac{3}{5}\)}
`@` `\text {Ans}`
`\downarrow`
`(x+1)^2 = 4/25`
`=> (x+1)^2 = (+-2/5)^2`
`=>`\(\left[{}\begin{matrix}x+1=\dfrac{2}{5}\\x+1=-\dfrac{2}{5}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy, `x \in {-3/5; -7/5}.`
\(\left(x^2-1\right)\left(x^2-5\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-1< 0\\x^2-5>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x^2-1>0\\x^2-5< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2< 1\\x^2>5\end{matrix}\right.\)(vô lí) hoặc \(\left\{{}\begin{matrix}x^2>1\\x^2< 5\end{matrix}\right.\)
\(\Rightarrow1< x< \sqrt{5}\) hoặc \(-\sqrt{5}< x< -1\)
Vậy \(-\sqrt{5}< x< -1\) hoặc \(1< x< \sqrt{5}\)
\(\left(\dfrac{1}{5}\right)^{25}\cdot\left(\dfrac{1}{5}\right)^{30}\)
\(=\left(\dfrac{1}{5}\right)^{25+30}\)
\(=\left(\dfrac{1}{5}\right)^{55}\)
\(\left(\dfrac{1}{16}\right)^3:\left(\dfrac{1}{8}\right)^2\)
\(=\left[\left(\dfrac{1}{2}\right)^4\right]^3:\left[\left(\dfrac{1}{2}\right)^3\right]^2\)
\(=\left(\dfrac{1}{2}\right)^{12}:\left(\dfrac{1}{2}\right)^6\)
\(=\left(\dfrac{1}{2}\right)^{12-6}=\left(\dfrac{1}{2}\right)^6\)
\(\left(x^3\right)^2:\left(x^2\right)^3\)
\(=x^{3\cdot2-2\cdot3}\)
\(=x^0=1\)