K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

O A B M N I C E

a/ Ta có 

\(AO\perp MN\)

Nối BO \(\Rightarrow BO\perp MN;IM=IN\) (Hai tiếp tuyến cùng xuất phát từ 1 điểm ngoài đường tròn thì đường nối điểm đó với tâm vuông góc với dây cung nối 2 tiếp điểm tại trung điểm của dây cung đó)

\(\Rightarrow AO\equiv BO\) Hay nói cách khác B; A; I; O thẳng hàng

Xét hai tg vuông IMO và tg vuông NBO có

\(OM=ON=R\Rightarrow\Delta OMN\) cân tại O

\(OI\perp MN\)

\(\Rightarrow\widehat{MOI}=\widehat{BON}\) (trong tg cân đường cao từ đỉnh tg cân đồng thời là đường phân giác)

=> tg IMO đồng dạng với tg NBO \(\Rightarrow\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\left(dpcm\right)\)

b/ Xét tg OMNB có 

\(IM=IN;IO=IA\) => OMAN là hình bình hành \(\Rightarrow AM=ON=OM=AN=OA=R\)

=> tg AMO là tg đều mà \(MI\perp AO\Rightarrow\widehat{AMI}=\widehat{OMI}=30^o\)  (Trong tg đều đường cao đồng thời là đường phân giác)

Xét tg vuông MIO có \(IO=\frac{MO}{2}=\frac{R}{2}\) (Trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)

Xét tg vuông BMO có

\(MO^2=OI.OB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OB=\frac{MO^2}{IO}=\frac{R^2}{\frac{R}{2}}=2R\)

Xét 2 tg vuông BMO và BNO có

BO chung

\(\widehat{MOI}=\widehat{BON}\left(cmt\right)\Rightarrow\Delta BMO=\Delta BNO\) (Theo trường hợp 2 tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau thì bằng nhau)

\(\Rightarrow S_{OMNB}=S_{BMO}+S_{BNO}=2S_{BMO}=\frac{2.BM.MO}{2}=BM.MO=2R.R=2R^2\)

c/ Xét hình bình hành OMAN có \(MN\perp OA\) => OMAN là hình thoi (Hình bh có hai đường chéo vuông góc với nhau)

=> MN là đường phân giác của \(\widehat{AMO}\) và \(\widehat{ANO}\)

Mà \(\widehat{ANO}=\widehat{AMO}=60^o\) (Trong hbh hai góc đối diện bằng nhau) \(\Rightarrow\widehat{MNC}=30^o\)

Xét tg MNC có \(\widehat{NMC}=90^o\) (Góc nội tiếp chắn nửa đường tròn) => tg NMC là tg vuông tại M

\(\Rightarrow MC=\frac{NC}{2}=R\) (Trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền

Ta có \(BI=BO-IO=2R-\frac{R}{2}=\frac{3R}{2}\)

Xét tg vuông ECM và tg vuông EBI có

MC//BI (cùng vuông góc với MN) \(\Rightarrow\widehat{MCE}=\widehat{IBE}\) (góc so le trong)

=> tg ECM đồng dạng tg EBI \(\Rightarrow\frac{MC}{BI}=\frac{EM}{EI}=\frac{R}{\frac{3R}{2}}=\frac{2}{3}\Rightarrow\frac{EM}{IM}=\frac{2}{5}\)

Xét tg vuông MNC có \(MN=\sqrt{NC^2-MC^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

Mà \(IM=IN=\frac{MN}{2}=\frac{R\sqrt{3}}{2}\)

\(\Rightarrow\frac{EM}{IM}=\frac{EM}{\frac{R\sqrt{3}}{2}}=\frac{2}{5}\Rightarrow EM=\frac{R\sqrt{3}}{5}\)

Ta có \(EN=MN-EM=R\sqrt{3}-\frac{R\sqrt{3}}{5}=\frac{4R\sqrt{3}}{5}\)

\(\Rightarrow\frac{EN}{EM}=\frac{\frac{4R\sqrt{3}}{5}}{\frac{R\sqrt{3}}{5}}=4\Rightarrow\sqrt{\frac{EN}{EM}}=2\)

Mà đề bài bắt CM \(\sqrt{EN}=NC\sqrt{EM}\Rightarrow NC=\sqrt{\frac{EN}{EM}}\)

Mà NC=2R 

Vậy xem lại đề bài

16 tháng 10 2021

Sorry

\(\frac{NC}{CM}=\sqrt{\frac{EN}{EM}}\)

Mà \(\frac{NC}{CM}=\frac{2R}{R}=2\)

\(\Rightarrow\frac{NC}{CM}=\sqrt{\frac{EN}{EM}}\Rightarrow CM\sqrt{EN}=NC\sqrt{EM}\)

NM
16 tháng 10 2021

ta có :

undefined

15 tháng 10 2021

\(A=\left(cosa-sina\right)^3-\left(cosa+sina\right)^3\)

\(=cos^3a-sin^3a-3cosa.sina\left(cosa-sina\right)-cos^3-sin^3a-3sina.cosa\left(sina+cosa\right)\)  

\(=-2sin^3a-6cos^2a.sina\)

\(C=\frac{4sina}{1+tan^2a}+2sina-5\)\(=4sina.cos^2a+2sina-5\)

Suy ra : \(B=A+C=-2sin^3a-2cos^2a.sina+2sina-5\)

\(=-2sin^3a-2\left(1-sin^2a\right)sina+2sina-5\)

\(=-5\)

15 tháng 10 2021

Vì ^CAM = ^EAN (đ.đ) 

=> \(\widebat{MC}=\widebat{EN}\)(1)

^MBC ( góc nội tiếp chắn cung MC )  (2)

^EBN ( góc nội tiếp chắn cung EN ) (3)

lại có (1) 

Từ (1) ; (2) ; (3) suy ra ^MBC = ^NBE 

16 tháng 10 2021

a, Xét tam giác MON có : OM = ON = R

=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao 

đồng thời là đường phân giác => ^MOI = ^ION 

Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm 

=> ON vuông BN hay ^ONB = 900 

Xét tam giác IOM và tam giác NOB có : 

^IOM = ^NOB ( cmt )

^OIM = ^ONB = 900

Vậy tam giác IOM ~ tam giác NOB ( g.g ) 

=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)

ý b sáng mai mình gửi nhé ;)) 

16 tháng 10 2021

 sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900 

b,  Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)

Theo định lí Pytago tam giác OIM ta được : 

\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)

Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm 

=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M 

Xét tam giác OMB vuông tại M, đường cao MI 

Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)

\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)

CM : tam giác OMB = tam giác ONB ( ch - gn ) 

Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)

\(=R.\sqrt{3}R=\sqrt{3}R^2\)

15 tháng 10 2021

TL :

bằng 2

HT

Học tốt

15 tháng 10 2021

bằng 2

20 tháng 10 2021

Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

15 tháng 10 2021

ấn máy tính casio là xong nhé