Hai dung dịch muối có khối lượng tổng cộng bằng 240 kg. Lượng muối trong dung dịch I là 7,8 kg, lượng muối trong dung dịch II là 5,5 kg. Biết nồng độ muối trong dung dịch I nhiều hơn nồng độ muối trong dung dịch II là 1%, tính khối lượng mỗi dung dịch trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trung bình mỗi năm, giả sử dân số của thành phố đó tăng \(x\%\) \(\left(0< x< 100\right)\)
Sau năm thứ nhất, dân số ở thành phố đó sẽ là \(4000000+4000000.x\%\)
Sau năm thứ hai, dân số ở thành phố đó sẽ là \(\left(4000000+4000000.x\%\right)+\left(4000000+4000000.x\%\right).x\%\)\(=4000000+8000000.\dfrac{x}{100}+4000000.\dfrac{x}{100}.\dfrac{x}{100}\)\(=400x^2+80000x+4000000\)
Vì sau 2 năm, dân số của thành phố đó tăng thành 4 056 196 người nên ta có pt \(400x^2+80000x+4000000=4056196\)\(\Leftrightarrow400x^2+80000x-56196=0\)\(\Leftrightarrow100x^2+20000x-14049=0\) (*)
pt (*) có \(\Delta'=10000^2-100\left(-14049\right)=101404900>0\)
\(\Rightarrow\) pt (*) có 2 npb \(\left[{}\begin{matrix}x_1=\dfrac{-10000+\sqrt{101404900}}{100}=0,7\left(nhận\right)\\x_2=\dfrac{-10000-\sqrt{101404900}}{100}=-200,7\left(loại\right)\end{matrix}\right.\)
Vậy trung bình 1 năm dân số của thành phố tăng \(0,7\%\)

Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}\Rightarrow\dfrac{BH}{30}=\dfrac{5}{6}\Rightarrow BH=25\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{30^2}{25}=36\)
=> x=25; y=36

Ta có : \(xyz=1\rightarrow\left\{{}\begin{matrix}xy=\dfrac{1}{z}\\xz=\dfrac{1}{y}\\yz=\dfrac{1}{x}\end{matrix}\right.\)
Do đó : \(A=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(A=1+x+y+z+xy+yz+xz+xyz\)
\(A=1+x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+1\)
\(A=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)+2\)
Áp dụng BĐT \(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Dấu \(=\) xảy ra \(\Leftrightarrow a=b\)
với \(x,y,z>0\) Ta được :
\(A\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}+2=2+2+2+2=8\)
Dấu \(=\) xảy ra \(\Leftrightarrow\)
\(\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\Rightarrow x=y=z=1\) ( vì \(x,y,z>0\) )




\(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}=1\Leftrightarrow\left(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}\right)\left(\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\right)=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)
\(\Leftrightarrow\overline{abc}-\overline{acb}=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)
Ta có: \(\overline{abc}-\overline{acb}=9b-9c=9\left(b-c\right)\)
suy ra \(\sqrt{\overline{abc}}\) và \(\sqrt{\overline{acb}}\) là hai số tự nhiên liên tiếp có tổng chia hết cho \(9\).
mà \(10\le\sqrt{\overline{acb}}< \sqrt{\overline{abc}}< 32\) nên suy ra \(\sqrt{\overline{acb}}\in\left\{13,22\right\}\).
Thử với từng trường hợp ta được \(\sqrt{\overline{acb}}=13\) suy ra \(\overline{acb}=169\) thỏa mãn \(\sqrt{\overline{abc}}=\sqrt{196}=14=13+1\).
Vậy \(\overline{abc}=196\).