ĐB: viết các tập hợp sau bằng cách chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó
A= {13;15;17;....;29}
B= {22;24;26;...;42}
C={7;11;15;17;...;29}
D={4;9;16;25;36;49}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}+\overline{ba}=187\)
\(\left(10a+b\right)+\left(10b+a\right)=187\)
\(\left(10a+a\right)+\left(10b+b\right)=187\)
\(11a+11b=187\)
\(11\left(a+b\right)=187\)
\(a+b=\dfrac{187}{11}=17\)
Do a và b là các chữ số trong số tự nhiên nên \(a,b\in N,1\le a,b\le9\)
Mà: `a+b=17`
⇒ a = 8, b = 9 hoặc a = 9, b = 8
Vấy số cần tìm là: 89 hoặc 98
Olm chào em, Đây là diễn đàn học tập để em trao đổi kiến thức, kĩ năng sống với bạn bè trong cộng đồng tri thức, câu hỏi của em phù hợp với diễn đàn vì vậy em không cần lo em nhé.
Cảm ơn em đã đồng hành cùng Olm.
Cho phân số có dạng a/b ( b khác 0 )
a có 3 cách chọn
b có 3 cách chọn
Vậy lập được 9 phân số
gọi tử số là a
mẫu số là b( khác 0 )
ta có 3 cách chọn cho a và 3 cách chọn cho b
lập đc số phân số là 3x3=9(phân số)
vậy ta lập đc 9 phân số
\(x\in\) N; \(x\) + 3 = 10;
\(x\) + 3 = 10
\(x\) = 10 - 3
\(x\) = 7
C = {7}
Khoảng cách của các số hạng là:
8 - 5 = 3
Số lượng số hạng của tổng là:
(62 - 5) : 3 + 1 = 20 (số hạng)
Tổng:
(62 + 5) x 20 : 2 = 670
ĐS: ...
\(E=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{972}\)
\(\dfrac{1}{3}E=\dfrac{1}{3}\cdot\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{972}\right)\)
\(\dfrac{1}{3}E=\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{90}+...+\dfrac{1}{2916}\)
\(4\cdot\dfrac{1}{3}E=4\cdot\left(\dfrac{1}{12}+\dfrac{1}{36}+...+\dfrac{1}{2916}\right)\)
\(\dfrac{4}{3}E=\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{243}\)
\(\dfrac{4}{3}E=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\)
\(\dfrac{4}{3}E=\dfrac{3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)}{2}\)
\(\dfrac{4}{3}E=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^4}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)}{2}\)
\(\dfrac{4}{3}E=\dfrac{1-\dfrac{1}{3^5}}{2}\)
\(\dfrac{4}{3}E=\dfrac{1}{2}\cdot\dfrac{3^5-1}{3^5}\)
\(E=\dfrac{3^5-1}{2\cdot3^5}\cdot\dfrac{3}{4}\)
\(E=\dfrac{3^5-1}{8\cdot3^4}\)
Olm chào em đây là dạng toán nâng cao chuyên đề tìm giá trị phân số của một số. Cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic.
Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Lượng dầu trong thùng khi thùng đầy nặng là:
18 - 2 = 16 (kg)
\(\dfrac{1}{2}\) lượng dầu là: 16 : 2 = 8 (kg)
Thùng chứa \(\dfrac{1}{2}\) lượng dầu thì thùng nặng là:
8 + 2 = 10 (kg)
Đáp số: 10 kg
\(\dfrac{1}{20\times19}\) - \(\dfrac{1}{19\times18}\) - \(\dfrac{1}{18\times17}\) - ... - \(\dfrac{1}{3\times2}\) - \(\dfrac{1}{2\times1}\)
= \(\dfrac{1}{20\times19}\) - (\(\dfrac{1}{19\times18}\) + \(\dfrac{1}{18\times17}\) + ... + \(\dfrac{1}{3\times2}\) + \(\dfrac{1}{2\times1}\))
= \(\dfrac{1}{20\times19}\) - (\(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + ... + \(\dfrac{1}{17\times18}\) + \(\dfrac{1}{18\times19}\))
= \(\dfrac{1}{380}\) - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{17}\) - \(\dfrac{1}{18}\) + \(\dfrac{1}{18}\) - \(\dfrac{1}{19}\))
= \(\dfrac{1}{380}\) - (\(\dfrac{1}{1}\) - \(\dfrac{1}{19}\))
= \(\dfrac{1}{380}\)- \(\dfrac{18}{19}\)
= - \(\dfrac{359}{380}\)
\(\dfrac{1}{20\cdot19}-\dfrac{1}{19\cdot18}-\dfrac{1}{18\cdot17}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(=\left(\dfrac{1}{19}-\dfrac{1}{20}\right)-\left(\dfrac{1}{18}-\dfrac{1}{19}\right)-\left(\dfrac{1}{17}-\dfrac{1}{18}\right)-...-\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{2}\right)\)
\(=\dfrac{1}{19}-\dfrac{1}{20}-\dfrac{1}{18}+\dfrac{1}{19}-\dfrac{1}{17}+\dfrac{1}{18}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)
\(=-\dfrac{1}{20}+\left(\dfrac{1}{19}+\dfrac{1}{19}\right)+\left(-\dfrac{1}{18}+\dfrac{1}{18}\right)+\left(-\dfrac{1}{17}+\dfrac{1}{17}\right)+...+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)-1\)
\(=-\dfrac{1}{20}+\dfrac{2}{19}-1\)
\(=-\dfrac{359}{380}\)
Lời giải:
$A=(4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ab-4ac)+(4c^2+4a^2+b^2+8ac-4bc-4ab)$
$=6(a^2+b^2+c^2)=6m$
Đây là toán nâng cao chuyên đề bài toán tính tuổi, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Coi tuổi em lúc trước là một phần thì ta có sơ đồ:
Theo sơ đồ ta có:
Tuổi em hiện nay là: 27 : (2 + 1) x 2 = 18 (tuổi)
Đáp số: 18 tuổi
A = {\(x\) = 2k + 1/ k\(\in\) N; 6≤ k ≤ 14}
B = {\(x\) = 2k/ k \(\in\) N; 11 ≤ k ≤ 21}
D = {\(x\) = k2/ k \(\in\) N; 2 ≤ k ≤ 7}
A={x\(\in\)N|13<=x<=29; \(x=2k+1;k\in N\)}
B={x\(\in\)N|22<=x<=42: \(x⋮\)2}
C={x\(\in\)N|7<=x<=29; \(x=4k+3\left(k\in N\right)\)}
D={x\(\in\)N|\(4< =x< =49;x=k^2;k\in N\)}