Chứng minh \(a+b+\frac{a+b}{ab}-\frac{29}{5}\ge0\) biết \(a,b>0\) thỏa mãn \(a+b-\frac{4}{5}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\hept{\begin{cases}\widehat{MOB}+\widehat{NOC}=120^{\text{o}}\\\widehat{MOB}+\widehat{BMO}=120^{\text{o}}\end{cases}}\Rightarrow\widehat{NOC}=\widehat{BMO}\)
Xét tam giác BMO và tam giác CNO có
\(\hept{\begin{cases}\widehat{BMO}=\widehat{NOC}\\\widehat{MBO}=\widehat{NCO}\end{cases}}\Rightarrow\Delta MBO\approx\Delta OCN\)
\(\Rightarrow\frac{BO}{NC}=\frac{MB}{OC}\Leftrightarrow BO.OC=NC.MB\Leftrightarrow\frac{1}{4}BC^2=NC.BM\)(đpcm)
b)
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\frac{x}{45}+\frac{x}{60}=3+\frac{1}{2}=\frac{7}{2}\Rightarrow x=90\)(tm)
Vậy quãng đường ab DÀI 90 KM
Gọi quãng đường AB là x ( km ) ( x > 0 )
Thời gian lúc đi là x/35 ( h )
Thời gian lúc về là x/42 ( h )
Vì thời gian về ít hơn thời gian đi là 1/2 ( h ) nên ta có phương trình :
x/35 - x/42 = 1/2
6x/210 - 5x/210 = 105/210
6x - 5x = 105 => x = 105 (tm)
Vậy quãng đường AB dài 105 km
Áp dụng BĐT Cô - si ta có :
\(\frac{4}{5}\ge a+b\ge2\sqrt{a.b}\Rightarrow\sqrt{ab}\le\frac{2}{5}\Leftrightarrow ab\le\frac{4}{25}\)
\(\left(a+b\right)+\frac{a+b}{ab}\)
\(=\left[\left(a+b\right)+\frac{4}{25}.\frac{a+b}{ab}\right]+\frac{21}{25}.\frac{a+b}{ab}\)
\(\ge2\sqrt{\left(a+b\right).\frac{4}{25}.\frac{a+b}{ab}}+\frac{21}{25}.\frac{2\sqrt{ab}}{ab}\)
\(=2.\frac{2}{5}.\frac{a+b}{\sqrt{ab}}+\frac{21}{25}.\frac{2}{\sqrt{ab}}\)
\(\ge2.\frac{2}{5}.\frac{2\sqrt{ab}}{\sqrt{ab}}+\frac{21}{25}.\frac{2}{\sqrt{\frac{4}{25}}}\)
\(=\frac{8}{5}+\frac{21}{5}=\frac{29}{5}\)
Dấu ' = ' xảy ra khi và chỉ khi \(a=b=\frac{2}{5}\)
là không biết