125.101 dung tính chất phâ phối
giúp với mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(\Rightarrow x^2=4.9\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=6\end{matrix}\right.\)
b.
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=3^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(x^2=4.9\)
\(x^2=36\)
\(x^2=6^2\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(---------\)
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\left(x+1\right)^2=3.3=3^2\)
\(\Rightarrow\left(1\right):x+1=3\)
\(x=3-1\Rightarrow x=2.\)
\(\Rightarrow\left(2\right):x+1=-3\)
\(x=-3-1\Rightarrow x=-4\)
Từ \(\left(1\right)\) và \(\left(2\right)\), ta suy ra:
\(\Rightarrow x\in\left\{{}\begin{matrix}2\\-4\end{matrix}\right.\)
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Mỗi tam giác có 3 cạnh mỗi cạnh chính là một đoạn thẳng \(\Rightarrow\)n-1 = 36 .3 = 108 \(\Rightarrow\)n= 108+1=109
Vậy có 109 đoạn thẳng
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)
Với $x=0, y=1$ thì $6x+11y=11$ chia hết cho 11 nhưng $x+7y=7$ không chia hết cho 31 bạn nhé. Bạn xem lại đề.
Bài 3:
a. Ta thấy:
$10^{10}+5\vdots 5$
$10^{10}+5=5(2.10^9+1)\not\vdots 25$
$\Rightarrow 10^{10}+5$ không là scp.
b. $10^{100}+10^{50}+1=1\underbrace{00...0}_{100}+1\underbrace{0000...0}_{50}+1$
$=1\underbrace{000...0}_{49}1\underbrace{0....0}_{49}1$ có tổng các chữ số là $3$ nên chia hết cho 3 mà không chia hết cho 9
Do đó số trên không phải scp.
Bài 4:
Hiển nhiên $S\vdots 3$
Ta thấy:
$3^2, 3^3, 3^4,..., 3^{2020}\vdots 9$
$3\not\vdots 9$
$\Rightarrow S=3+3^2+3^3+...+3^{2020}\not\vdots 9$
Vậy $S$ chia hết cho $3$ mà không chia hết cho $9$
$\Rightarrow S$ không là số chính phương.
125.101=125.(100+1)
= 125.100 + 125.1
= 12500 + 125
= 12625
\(125.101=125.100+125\)
\(=12500+125=12625.\)