giúp gấp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(37254\) chia x được \(146\) ( dư \(170\) ) nên :
\(37254-170=37084\) là số chia x được \(146\)
Số x là :
\(37084:146=254\)
Đáp số : \(x=254\)
Gọi T là giao điểm của 2 tiếp tuyến tại A và B của (O). Qua N kẻ đường thẳng song song với AM cắt AB tại C. Gọi I là giao điểm của AB và MN.
Khi đó, theo tính chất của 2 tiếp tuyến cắt nhau, ta có \(TA=TB\) \(\Rightarrow\Delta TAB\) cân tại T \(\Rightarrow\widehat{TBA}=\widehat{TAB}\)
Vì NC//TA nên \(\widehat{NCB}=\widehat{TAB}\) (2 góc đồng vị)
Từ đó \(\Rightarrow\widehat{TBA}=\widehat{NCB}\) \(\Rightarrow\Delta NCB\) cân tại N
\(\Rightarrow NC=NB\)
Mà \(NB=MA\) nên \(NC=MA\)
Do đó tứ giác NAMC là hình bình hành (vì có NC//MA và \(NC=MA\))
\(\Rightarrow\) MN và AC cắt nhau tại trung điểm I của mỗi đoạn
\(\Rightarrow\) I là trung điểm MN
\(\Rightarrow\) AB chia đôi MN (đpcm)
\(\dfrac{2\left(1-3x\right)}{5}-2+\dfrac{3x}{10}=8-\dfrac{2x+1}{4}\)
\(\Leftrightarrow\dfrac{8\left(1-3x\right)}{20}-\dfrac{40}{20}+\dfrac{6x}{20}=\dfrac{160}{20}-\dfrac{5\left(2x+1\right)}{20}\)
\(\Leftrightarrow8\left(1-3x\right)-40+6x=160-5\left(2x+1\right)\)
\(\Leftrightarrow8-24x-40+6x=160-10x-5\)
\(\Leftrightarrow-18x-32=155-10x\)
\(\Leftrightarrow-18x+10x=155+32\)
\(\Leftrightarrow-8x=187\)
\(\Leftrightarrow x=-\dfrac{187}{8}\)
Vậy: ...
\(\dfrac{21}{x+6}\) = \(\dfrac{14}{30}\)
21 : (\(x\) + 6) = \(\dfrac{7}{15}\)
\(x\) + 6 = 21 : \(\dfrac{7}{15}\)
\(x\) + 6 = 45
\(x\) = 45 - 6
\(x\) = 39
Bài 2:
Độ dài của `1/3` quãng đường đầu là:
`1/3*600=200` (km)
Thời gian xe đi trên `1/3` quãng đường đầu là:
\(\dfrac{200}{x}\left(h\right)\)
Quãng đường còn lại là: `600 - 200 = 400`(km)
Vận tốc của xe khi đi trên quãng đường còn lại: `x+10` (km/h)
Thời gian xe đi trên quãng đường còn lại là:
\(\dfrac{400}{x+10}\left(h\right)\)
Biểu thức thể hiện thời gian xe đi từ Hà Nội đến Quãng Ngãi là:
\(\dfrac{200}{x}+\dfrac{400}{x+10}=\dfrac{200\left(x+10\right)}{x\left(x+10\right)}+\dfrac{400x}{x\left(x+10\right)}=\dfrac{200x+2000+400x}{x\left(x+10\right)}=\dfrac{600x+2000}{x\left(x+10\right)}\)
l: \(L=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)
\(=\sqrt{12+4+2+2\cdot2\sqrt{3}\cdot2+2\cdot2\sqrt{3}\cdot\sqrt{2}+2\cdot2\cdot\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{3}+\sqrt{2}+2\right)^2}=2\sqrt{3}+\sqrt{2}+2\)
m: \(M=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{\left(2-\sqrt{3}\right)^2}}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\left(2-\sqrt{3}\right)}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+20-10\sqrt{3}}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{9-\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{9-\sqrt{25}}=\sqrt{4}=2\)
p: \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(=\sqrt{14+2\cdot\sqrt{2}\cdot\sqrt{5}+2\cdot\sqrt{2}\cdot\sqrt{7}+2\cdot\sqrt{5}\cdot\sqrt{7}}\)
\(=\sqrt{5+2+7+2\cdot\sqrt{2}\cdot\sqrt{5}+2\cdot\sqrt{2}\cdot\sqrt{7}+2\cdot\sqrt{5}\cdot\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
Bài 3:
a)
\(\dfrac{2}{3}x+4=-12\\ \Rightarrow\dfrac{2}{3}x=-12-4=-16\\ \Rightarrow x=-16:\dfrac{2}{3}\Rightarrow x=-24\)
b) \(\dfrac{5}{6}-\dfrac{1}{6}:x=-2\dfrac{1}{2}\)
\(\Rightarrow\dfrac{5}{6}-\dfrac{1}{6}:x=-\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{6}:x=\dfrac{5}{6}+\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{6}:x=\dfrac{14}{6}\\ \Rightarrow x=\dfrac{1}{6}:\dfrac{14}{6}=\dfrac{1}{14}\)
c) \(x:20-25\%x=-1\dfrac{1}{5}\)
\(\Rightarrow\dfrac{x}{20}-\dfrac{x}{4}=-\dfrac{4}{5}\)
\(\Rightarrow\dfrac{x}{20}-\dfrac{5x}{20}=-\dfrac{4}{5}\)
\(\Rightarrow-\dfrac{4x}{20}=\dfrac{-4}{5}\)
\(\Rightarrow-\dfrac{x}{5}=-\dfrac{4}{5}\)
\(\Rightarrow x=-4\)
d) \(\dfrac{35}{x-1}=\dfrac{15}{-6}\left(x\ne1\right)\)
\(\Rightarrow-6\cdot35=15\left(x-1\right)\\ \Rightarrow-210=15x-15\\ \Rightarrow15x=-210+15=-195\\ \Rightarrow x=\dfrac{-195}{15}\\ \Rightarrow x=-13\)
e)
\(\left(\dfrac{9}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-1}\cdot\left(\dfrac{3}{5}\right)^5\\ \Rightarrow\left[\left(\dfrac{3}{5}\right)^2\right]^x=\dfrac{3}{5}\cdot\left(\dfrac{3}{5}\right)^5\\ \Rightarrow\left(\dfrac{3}{5}\right)^{2x}=\left(\dfrac{3}{5}\right)^6\\ \Rightarrow2x=6\\ \Rightarrow x=3\)
f)
\(0,5^{x+1}+0,5^x=1,5\\ \Rightarrow0,5^x\cdot\left(0,5+1\right)=1,5\\ \Rightarrow0,5^x\cdot1,5=1,5\\ \Rightarrow0,5^x=1,5:1,5=1\\ \Rightarrow0,5^x=0,5^0\\ \Rightarrow x=0\)
Bài 3:
a: \(\dfrac{2}{3}x+4=-12\)
=>\(\dfrac{2}{3}x=-12-4=-16\)
=>\(x=-16:\dfrac{2}{3}=-16\cdot\dfrac{3}{2}=-24\)
b: \(\dfrac{5}{6}-\dfrac{1}{6}:x=-2\dfrac{1}{2}\)
=>\(\dfrac{5}{6}-\dfrac{1}{6}:x=-\dfrac{5}{2}\)
=>\(\dfrac{1}{6}:x=\dfrac{5}{6}+\dfrac{5}{2}=\dfrac{5}{6}+\dfrac{15}{6}=\dfrac{20}{6}=\dfrac{10}{3}\)
=>\(x=\dfrac{1}{6}:\dfrac{10}{3}=\dfrac{1}{6}\cdot\dfrac{3}{10}=\dfrac{1}{20}\)
c: \(x:20-25\%\cdot x=-1\dfrac{1}{5}\)
=>\(0,05x-0,25x=-1,2\)
=>-0,2x=-1,2
=>x=1,2:0,2=6
d: \(\dfrac{35}{x-1}=\dfrac{15}{-6}\)(ĐKXĐ: \(x\ne1\))
=>\(x-1=\dfrac{35\cdot\left(-6\right)}{15}=\dfrac{-210}{15}=-14\)
=>x=-14+1=-13(nhận)
e: \(\left(\dfrac{9}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-1}\cdot\left(\dfrac{3}{5}\right)^5\)
=>\(\left(\dfrac{3}{5}\right)^{2x}=\left(\dfrac{3}{5}\right)\cdot\left(\dfrac{3}{5}\right)^5=\left(\dfrac{3}{5}\right)^6\)
=>2x=6
=>x=3
f: \(0,5^{x+1}+0,5^x=1,5\)
=>\(0,5^x\cdot\left(0,5+1\right)=1,5\)
=>\(0,5^x=1\)
=>x=0
Bài 2:
a: \(\dfrac{-23}{32}+\dfrac{14}{21}+\dfrac{-9}{32}+\dfrac{28}{21}\)
\(=\left(-\dfrac{23}{32}-\dfrac{9}{32}\right)+\left(\dfrac{14}{21}+\dfrac{28}{21}\right)\)
\(=-\dfrac{32}{32}+\dfrac{42}{21}=-1+2=1\)
b: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)\)
\(=\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{3}{12}\right)\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{20}=\dfrac{17}{240}\)
c: \(\dfrac{-5}{7}\cdot16\dfrac{1}{3}+\dfrac{5}{7}\cdot\left(-23\dfrac{2}{3}\right)\)
\(=\dfrac{-5}{7}\cdot\left(16+\dfrac{1}{3}+23+\dfrac{2}{3}\right)\)
\(=-\dfrac{5}{7}\cdot40=-\dfrac{200}{7}\)
d: \(6\dfrac{4}{9}:\dfrac{7}{2}+7\dfrac{5}{9}:\left(\dfrac{2}{7}\right)^{-1}-\dfrac{1}{2}\)
\(=\left(6+\dfrac{4}{9}\right)\cdot\dfrac{2}{7}+\left(7+\dfrac{5}{9}\right)\cdot\dfrac{2}{7}-\dfrac{1}{2}\)
\(=\dfrac{2}{7}\left(6+\dfrac{4}{9}+7+\dfrac{5}{9}\right)-\dfrac{1}{2}=\dfrac{2}{7}\cdot14-\dfrac{1}{2}=4-\dfrac{1}{2}=\dfrac{7}{2}\)
e: \(\left(2^3:\dfrac{1}{2}\right)\cdot\dfrac{1}{8}+\dfrac{1}{9}\cdot\left(-3\right)^2-\left(-\dfrac{1}{2015}\right)^0\)
\(=\left(8\cdot2\right)\cdot\dfrac{1}{8}+\dfrac{1}{9}\cdot9-1=2+1-1=2\)
a) Sau khi lấy lần đầu còn lại:
\(1-\dfrac{1}{2}=\dfrac{1}{2}\)(bao gạo)
Sau khi lấy hai còn lại:
\(\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{1}{10}\) (bao gạo)
Ban đầu bao gạo nặng:
\(5:\dfrac{1}{10}=50\left(kg\right)\)
b) Lần đầu người ta lấy:
\(50\times\dfrac{1}{2}=25\left(kg\right)\)
Lần hai người ta lấy:
\(50\times\dfrac{2}{5}=20\left(kg\right)\)
ĐS: ...
Giải:
a; 5 kg gạo ứng với phân số là:
1- (\(\dfrac{1}{2}\) + \(\dfrac{2}{5}\)) = \(\dfrac{1}{10}\) (bao gạo)
Ban gạo ban đầu nặng là:
5 : \(\dfrac{1}{10}\) = 50 (kg)
b; Lần thứ nhất người đó lấy số gạo là:
50 x \(\dfrac{1}{2}\) = 25 (kg)
Lần hai người đó lấy số gạo là:
50 x \(\dfrac{2}{5}\) = 20 (kg)
Đáp số:...
Bài 4:
a: Đặt 2x+10=0
=>2x=-10
=>x=-5
b: Đặt 4(x-1)+3x-5=0
=>4x-4+3x-5=0
=>7x=9
=>\(x=\dfrac{9}{7}\)
c: Đặt \(-1\dfrac{1}{3}x^2+x=0\)
=>\(\dfrac{4}{3}x^2-x=0\)
=>\(x\left(\dfrac{4}{3}x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\\dfrac{4}{3}x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\)
Bài 5:
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
Ta có: DA=DM
=>D nằm trên đường trung trực của AM(2)
Từ (1),(2) suy ra BD là đường trung trực của AM
c: Xét ΔBKC có
KM,CA là các đường cao
KM cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC tại N