\(\sqrt{x-6}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A/
Diện tích kính
\(S=2.50.45+2.80.45+80.50=15700cm^2=1,57m^2\)
B/
Thể tích bể
\(V=80.50.45=180000cm^3\)
Thể tích ứng với 1 cm chiều cao là
\(V_1=\dfrac{180000}{45}=4000cm^3\)
Khi bỏ viên đá vào bể mực nước tăng thêm là
\(10000:4000=2,5cm\)
Mực nước sau khi bỏ viên đá vào là
\(45+2,5=47,5cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`@` `\text {Ans}`
`\downarrow`
Mình nghĩ \(2x-5y+5xy=14\) chứ c nhỉ ;-;?
`=> 2x - 5y + 5xy = 12 + 2`
`=> 2x - 2 - 5y + 5xy = 12`
`=> (2x - 2) - (5y - 5xy) = 12`
`=> 2(x - 1) - 5y(1 - x) = 12`
`=> 2(x - 1) + 5y(x - 1) = 12`
`=> (2+5y)(x - 1) = 12`
`=> (2+5y)(x-1) \in \text {Ư(12)} =`\(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Để `2+5y \in \text {Ư(12)}` thì `(2+5y) \in {2; -3; 12}`
Ta có bảng sau:
\(2+5y\) | `2` | `-3` | `12` |
`x-1` | `6` | `-4` | `1` |
\(x\) | `0` | `-1` | `2` |
\(y\) | `7` | `-3` | `2` |
Vậy, ta có các cặp số nguyên thỏa mãn \(\left\{0;7\right\};\left\{-1;-3\right\};\left\{2;2\right\}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$
$\Rightarrow \frac{ad-bc}{bd}< 0$
$\Rightarrow ad-bc<0$ (do $bd>0$)
$\Rightarrow ad< bc$ (đpcm)
b.
$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$
--------
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^{100}=2^{4.25}=16^{25}\)
\(3^{75}=3^{3.25}=27^{25}\)
\(5^{50}=5^{2.25}=25^{25}\)
vì \(16^{25}< 25^{25}< 27^{25}\)
⇒ \(2^{100}< 5^{50}< 3^{75}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$\widehat{M_1}-\widehat{M_2}=\widehat{N_1}-\widehat{N_2}(1)$
$\widehat{M_1}+\widehat{M_2}=\widehat{N_1}+\widehat{N_2}(2)$ (cùng bằng $180^0$)
Lấy $(1)+(2)$ và thu gọn thì $\widehat{M_1}=\widehat{N_1}$
Mà 2 góc này ở vị trí so le trong nên $m\parallel n$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2}{3}-\left[\dfrac{7}{4}-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left[\dfrac{7}{4}-\left(\dfrac{4}{8}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(\dfrac{7}{4}-\dfrac{7}{8}\right)=\dfrac{2}{3}-\left(\dfrac{14}{8}-\dfrac{7}{8}\right)=\dfrac{2}{3}-\dfrac{14}{8}=\dfrac{16}{24}-\dfrac{42}{24}=\dfrac{-26}{24}=-\dfrac{13}{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)
\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)
b) \(2^{n+1}+4.2^n=3.2^7\)
\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
c) \(3^{n+2}-3^{n+1}=486\)
\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)
\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)
d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)
\(\sqrt[]{x-6}=2\left(x\ge6\right)\)
\(\Rightarrow x-6=4\Rightarrow x=10\)
\(\sqrt{x-6}\) =2
Đk \(x\) - 6 ≥ 0 ⇒ \(x\) ≥ 6
\(\sqrt{x-6}=2\)
\(x-6=4\)
\(x=4+6\)
\(x\) = 10