Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CM: \(\dfrac{a^3+b^3}{c^3+d^3}\) = \(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)
mọi ng giúp mình bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9h kém 5p=8h55p
8h55p-8h25p=30p=0,5 giờ
Sau 0,5 giờ, xe máy đi được:
30x0,5=15(km)
Hiệu vận tốc hai xe là 50-30=20(km/h)
Hai xe gặp nhau sau khi ô tô đi được:
15:20=0,75(giờ)=45p
Ô tô đuổi kịp xe máy lúc:
8h55p+45p=9h40p
vì tháng 2 năm 2009 có 28 ngày nên trong đó có 1 ngày có ít nhất 2 em bé ra đời
Ta có: `2009` không chia hết `4`
`=> 2009` không là năm nhuận
`=>` Tháng hai chỉ có `28` ngày
Mà có đến `29` em bé sinh ra
Nên chắc chắn có ít nhất 1 cặp ra đời cùng ngày
`1/4 . 2/6 . 3/8 . 4/10 . ... . 31/64 = 2^x`
`=> 1/(2.2) . 2/(2.3) . 3/(2.4) . 4/(2.5) . ... . 31/(32.2) = 2^x`
Số phân số có trong dãy là: `(31 - 1) : 1 + 1 = 31` (phân số)
`=> (1.2.3.4...31)/(2^31 . 2 . 3 . 4 . 5 ... 31.32) = 2^x`
`=> 1/(2^31 . 32) = 2^x`
`=> 1/(2^31 . 2^5) = 2^x`
`=> 1/(2^(31+5)) = 2^x`
`=> 1/(2^36) = 2^x`
`=> 2^(-36) = 2^x`
`=> x = -36`
Vậy `x = -36`
a) Ta có:
`m^2>=0` với mọi m
`=>m^2+1/2>=1/2>0` với mọi m
`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0`
`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m
b) Ta có:
`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4`
`=(m+1/2)^2+7/4>=7/4>=0` với mọi m
`=>-(m^2+m+2)<=-7/2<0` với mọi m
`=>-(m^2+m+2)≠0` với mọi m
=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn
a.
\(\left\{{}\begin{matrix}S=x_1+x_2=7\\P=x_1x_2=10\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-7x+10=0\)
Trình bày tương tự câu a ta có:
b.
\(x^2-2x-35=0\)
c.
\(x^2+13x+36=0\)
Giá sau khi giảm so với giá bìa:
1 - 40% = 60%
Giá bìa quyển sách là:
69600 : 60% = 116000 (đồng)
Áp dụng t/c dãy tỉ số bằng nhau: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
Từ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(VT=\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{bk^3+b^3}{dk^3+d^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
\(VP=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
Vậy \(VT=VP\left(đpcm\right)\)
____________
VT = vế trái
VP = vế phải
\(#NqHahh\)