tìm giá trị nhỏ nhất của A=(x2+x+1):(x+1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (10x+8)/12-(2x-1)/12>48/12
<=>10x+8-2x+1>48
<=> 10x-2x>48-8-1
<=>8x>39
<=> x>39/8
Vậy tập n là {x/x>39/8}
\(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x-2x\le-3+5\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge-2\)
Vậy bất phương trình có tập nghiệm \(\left\{x/x\ge-2\right\}\)
giải bài toán bằng cách lập phương trình:
1 tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm . khi thực hiện mỗi ngày tổ đã sản xuất được 57 sản phẩm do đó tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm .Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))
Dạng này thì ta phân tích vế trái là 1 tích bên phải là 1 hằng số:
2x^2+3xy-2y^2=7 <=> 2x^2 + 4xy-xy-2y^2=7
<=> 2x(x+2y)- y(x+2y)=7 <=> (x+2y)(2x-y)=7
vì 7= 7.1=1.7=-1.(-7)=-7.(-1) nên ta có 4 trường hợp:
x+2y 1 7 -7 -1
2x-y 7 1 -1 -7
x 0,2 1,8 -12,2 -3
y 0,4 2,6 -2,6 1
kết luận loại loại loại thỏa mãn
Vậy x=-3; y=1
Ta có:
2x^2+3xy-2y^2=7
\Leftrightarrow 2x^2-xy+4xy-2y^2=7
\Leftrightarrow x(2x-y)+2y(2x-y)=7
\Leftrightarrow (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
\Rightarrow 2(2x-y)+x+2y=15
\Rightarrow 5x=15 \Rightarrow x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y=1,x+2y=7 \Rightarrow x=1,8 , y=2,6 (KTM)
Nếu 2x-y=-1,x+2y=-7 \Rightarrow x=-1,8 , y=-2,6(KTM)
Nếu 2x-y=-7 , x+2y=-1\Rightarrow x=-3, y=1(tm)
Vậy (x;y) là (3;-1);(-3;1)