a.Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\). Tính \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
b. Tính \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{c^2+a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a3-b3=(a-b)3+3ab(a-b)
Mà: (a-b)3+3ab(a-b)
=a3-3a2b+3ab2-b3+3a2b-3ab2
=a3-b3
=>đpcm
a/ Ta có : a3+b3=(a+b)3-3ab(a+b)
VP=(a+b)3-3ab(a+b)
=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3
=> đpcm
A = a^4 - 2a^3 +a^2 + 2a^2 - 4a + 2 +3
A = ( a^4 - 2a^3 + a^2) + 2 ( a^2 - 2a +1) +3
A = ( a^2 - a)^2 + 2 ( a-1)^2 + 3 Có ( a^2 - a )^2 >= 0 với mọi giá trị của a
và ( a-1)^2 >=0 với mọi giá trị của a
Nên suy ra ta có => (a^2 - a)^2 + 2(a - 1)^2 + 3 >= 3
Dấu " = " xảy ra <=> a -1 =0
<=> a = 1
Vậy B min = 3 <=> a =1
Ta có : A=a4-2a3+3a2-4a+5
=a4-2a3+a2+2a2-4a+2+3
=(a2-a)2+2(a-1)2+3
Mà : \(\left(a^2-a\right)^2+2\left(a-1\right)^2\ge0\)
\(\Rightarrow\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Vậy MinA=3
Dấu "=" xảy ra khi a-1=0
\(\Rightarrow\) a=1
TA CÓ 10-x/100 + 20-x/110 +30-x/120=3
tương đương với: 10-x/100 - 1 +20-x/110 -1 + 30-x/120 -1 =3 -3
tương đương với: 90-x/100 + 90-x/110 + 90-x/120 =0
tương đương với: (90-x)(1/100+1/110+1/120)=0
tương đương với: 90-x=0 (vì 1/100+1/110+1/120 khác 0)
tương đương với: x=90
x^m+x^n+1chia hết x^2+x+1
=>x^m+x^n+x^0chia hết x^2+x^1+x^0
=>x^(m+n+0)chia hết x^(2+1+0)
=>x^(m+n)chia hết x^3
=>m+n chia hết 3
=>m+n thuộc B(3)={0;3;6;......}
nếu m+n thuộc B(3)={0;3;6;......} thì x^m+x^n+1chia hết x^2+x+1
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
Em mới lớp 7 nên chỉ biết giải bài 2 thôi
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\) Thao vào P ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)
1
xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)
\(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)
tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)