K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Ha ~! Vẫn còn sót bài này

\(BDT\Leftrightarrow\frac{1-a}{1+a}+\frac{1-b}{1+b}+2\sqrt{\frac{\left(1-a\right)\left(1-b\right)}{\left(1+a\right)\left(1+b\right)}}\)

\(\le\frac{1-a-b}{1+a+b}+1+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Và \(\frac{2\left(1-ab\right)}{1+ab+a+b}+2\sqrt{\frac{1+ab-a-b}{1+ab+a+b}}\)\(\le\frac{2}{1+a+b}+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Đặt \(\hept{\begin{cases}u=ab\\v=a+b\end{cases}\left(u,v\ge0\right)}\) khi đó cần c/m:

\(\frac{2\left(1-u\right)}{1+u+v}+2\sqrt{\frac{1+u-v}{1+u+v}}\le\frac{2}{1+v}+2\sqrt{\frac{1-v}{1+v}}\)

Biến đổi tương đương ta có: 

\(\frac{1+u-v}{1+u+v}-\frac{1-v}{1+v}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

\(\Leftrightarrow\frac{2uv}{\left(1+u+v\right)\left(1+v\right)}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

Nếu \(u=0\) BĐT hiển nhiên đúng. Với \(u>0\) BĐT tương đương với:

\(\frac{2v}{2+v}\le\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\left(1\right)\)

Mà khi \(u>0\) ta có: \(\frac{1+u-v}{1+u+v}\ge\frac{1-v}{1+v}\)

Nên \(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{\frac{1-v}{1+v}}=2\sqrt{-1+\frac{2}{1+v}}\)

Hơn nữa ta có: \(v\le\frac{4}{5}\Rightarrow\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{-1+\frac{2}{1+\frac{4}{5}}}=\frac{2}{3}\)

Ngoài ra do \(v\le\frac{4}{5}< 1\Rightarrow\frac{2v}{1+v}=\frac{2}{\frac{2}{v}+1}< \frac{2}{3}\)

Do vậy \(\left(1\right)\) đúng, BĐT đầu được c/m

18 tháng 3 2017

chịu nhưng ai chat nhìu kt bn với mk nha, mk cho

Bài giải

Các số liên tiếp của dãy số là : 1;6;15;20;15;6;1

Tổng của chúng là :

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64

                Đáp số : 64.

19 tháng 3 2017

= 64 nhe

19 tháng 3 2017

Max nhiều =((

a) (Giải cụ thể hơn xíu nè!)

a = 1; b = -10; c = -m + 20

\(\Delta=b^2-4ac\)

     \(=\left(-10\right)^2-4.1.\left(-m+20\right)\)

     \(=100+4m-80\)

     \(=20+4m\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow20+4m>0\Leftrightarrow m>-5\)

b/ Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=-m+20\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\Leftrightarrow-m+20< 0\Leftrightarrow m>20\)

c/ Theo Vi-et ta có: \(S=x_1+x_2=-\frac{b}{a}=10\)

                               \(P=-m+20\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P>0\\S>0\end{cases}}\Leftrightarrow\hept{\begin{cases}P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}-m+20>0\\10>0\left(hiennhien\right)\end{cases}\Leftrightarrow}-m< 20}\)

18 tháng 3 2017

a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Delta'=5+m\Leftrightarrow m>-5\)

18 tháng 3 2017

\(x^{2011}+b^{2011}=2\)

19 tháng 3 2017

cách làm thế nào z bạn

18 tháng 3 2017

mình chịu mina ai biết thì giải giùm nha sory

19 tháng 3 2017

thế mà la toan lớp 1 à ! thằng ngu!

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

19 tháng 3 2017

\(\hept{\begin{cases}a+b+c+d=7\\a^2+b^2+c^2+d^2=13\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b+c+d=7-a\left(1\right)\\b^2+c^2+d^2=13-a^2\left(2\right)\end{cases}}\)

Ta có: 

\(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(bc+cd+db\right)\)

\(\le b^2+c^2+d^2+\left(b^2+c^2\right)+\left(c^2+d^2\right)+\left(d^2+b^2\right)=3\left(b^2+c^2+d^2\right)\)

\(\Rightarrow\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\left(3\right)\)

Thế (1), (2) vào (3) ta được

\(\left(7-a\right)^2\le3\left(13-a^2\right)\)

 \(\Leftrightarrow2a^2-7a+5\le0\)

\(\Leftrightarrow1\le a\le\frac{5}{2}\)

\(\Rightarrow\hept{\begin{cases}min\left(a\right)=1\\max\left(a\right)=\frac{5}{2}\end{cases}}\)

\(\Rightarrow\frac{min\left(a\right)+max\left(a\right)}{2}=\frac{1+\frac{5}{2}}{2}=\frac{7}{4}\)

20 tháng 3 2017

= 7/4 nhe

18 tháng 3 2017

1) Vì một tam giác vuông luôn nội tiếp đường tròn đường kính = cạnh huyền

\(\Rightarrow\)Tam giác vuông BHF và tam giác BDH nội tiếp đường tròn đường kính BH

\(\Leftrightarrow\)4 điểm B,F,H,D cùng nằm trên đường tròn \(\Rightarrow\)Tứ giác BFHD nội tiếp đường tròn đường kính BH

17 tháng 6 2017

a,TỨ GIÁC ĐẤY NT CM ĐC R NHA BN

b,bn cm thêm tứ giác HECD nt nứa  xong suy ra góc HAE = HCE (1)

từ tứ giác ý a nt suy ra góc MDH =FBE  (2)

TỨ giác EFBC nt suy ra góc FBE =FCE (3)

TỪ 1 2 VÀ 3 SUY RA DC LÀ PHÂN GIÁc