Một ô tô đi từ A đến B với vận tốc 45km/h và quay từ B về A với vận tốc 40km/h. Tính quãng đường AB biết thời gian đi hết ít hơn thời gian về là 1giờ 30 phút.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x + 20 = 0
⇔ 4x = -20
⇔ x = -5
Vậy phương trình có tập nghiệm S ={-5}
b) 2x – 3 = 3(x – 1) + x + 2
⇔ 2x – 3 = 3x – 3 + x + 2
⇔ 2x – 3x – x = -3 + 2 + 3
⇔ -2x = 2
⇔ X = -1
Vậy phương trình có tập nghiệm S ={-1}
c) (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0 ·
3x – 2 = 0 => x = 3/2 ·
4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S ={3/2; -5/4}
a) ĐKXĐ: : x ≠ 1 và x ≠ -1.
b) Quy đồng và khử mẫu ta được PT: x(x + 1) = (x – 1)(x +4)
⇔ x2 +x = x2 +4x– x -4
⇔ x – 4x +x = -4 -2x = -4 x = 2(thỏa mãn ĐKXĐ)
Vậy PT có tập nghiệm S = {2}
a) Phương trình bậc nhất một ẩn là phương trình 2x -8 = 0
b) Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm
S = {-2/3}
a) Phương trình bậc nhất một ẩn là phương trình :
2x - 8 = 0
b) Hai phương trình tương đương với nhau vì chúng có cùng tập nghiệm
Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm
S = ( -2 / 3 )
ai tk mk mk tk lại!!
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
\(3m^2-2m-1\)
\(=3m^2-3m+m-1\)
\(=3m\left(m-1\right)+\left(m-1\right)\)
\(=\left(m-1\right)\left(3m+1\right)\)
\(3m^2-2m-1\)
\(=3m^2+m-3m-1\)
\(=\left(3m^2+m\right)-\left(3m+1\right)\)
\(=m\left(3m+1\right)-\left(3m+1\right)\)
\(=\left(m-1\right)\left(3m+1\right)\)
Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
Ta có :
\(x^2\ge0\forall x\)
\(\Rightarrow x^2-6\ge-6\forall x\)
\(\Rightarrow\left(x^2-6\right)^2\ge\left(-6\right)^2=36\forall x\)
\(\Rightarrow A=\left(x^2-6\right)^2-12\ge36-12=24\forall x\)
Để A đạt GTNN là 24 <=> x = 0
Vậy GTNN của A là 24 tại x = 0
1 giờ 30 phút = 3/2 h.
Gọi x(km) là quãng đường AB (x>0)
Thời gian đi : x/45 h . Thời gian về : x/40 h
Theo đề bài ta có phương trình : x/40 – x/45 = 3/2 Giải phương trình ta được : x = 540 (thỏa mãn ĐK)
Vậy quãng đường AB là 540 km.