Với a, b, c là những số thực dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\)\(\left(c+a\right)\)=1
Chứng minh rằng \(\dfrac{a}{b\left(b+2c\right)^2}\)+\(\dfrac{b}{c\left(c+2a\right)^2}\)+\(\dfrac{c}{a\left(a+2b\right)^2}\)≥\(\dfrac{4}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Số gạo nếp bằng số phần gạo tẻ là:
$\frac{7}{10}: \frac{3}{4}=\frac{14}{15}$
Với \(p=2\) không thỏa mãn, xét với \(p>2\):
Đặt \(\left\{{}\begin{matrix}\dfrac{p+1}{2}=m^2\\\dfrac{p^2+1}{2}=n^2\end{matrix}\right.\) với m; n là các số nguyên dương và \(n>m\)
\(\Rightarrow\left\{{}\begin{matrix}p=2m^2-1\\p^2=2n^2-1\end{matrix}\right.\) \(\Rightarrow p^2-p=2n^2-2m^2\)
\(\Rightarrow p\left(p-1\right)=2\left(n-m\right)\left(n+m\right)\) (1)
Nếu \(p\le n\Rightarrow n^2+1\ge p^2+1=2n^2\Rightarrow n^2\le1\Rightarrow n=1\Rightarrow p=1\) (ktm)
\(\Rightarrow p>n>m\)
\(\Rightarrow n-m< p\) và \(n+m< 2p\) (2)
Từ (1) \(\Rightarrow2\left(n-m\right)\left(n+m\right)⋮p\), mà \(\left\{{}\begin{matrix}2⋮̸p\\n-m⋮̸p\end{matrix}\right.\) \(\Rightarrow n+m⋮p\) (3)
(2);(3) \(\Rightarrow n+m=p\)
Thay vào \(p^2+1=2n^2=2\left(p-m\right)^2\)
\(\Rightarrow p^2-4mp+2m^2-1=0\)
\(\Rightarrow p^2-4mp+p=0\) (do \(2m^2-1=p\))
\(\Rightarrow p-4m+1=0\)
\(\Rightarrow2m^2-4m=0\) (do \(p+1=2m^2\))
\(\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=2\end{matrix}\right.\)
\(\Rightarrow p=2m^2-1=7\)
\(\Rightarrow p^2-1=49-1=48⋮48\)
Tổng lượng hàng 3 xe chở được:
3/4 + 4/5 + 1/2 = 41/20 (tấn hàng)
Trung bình mỗi xe chở được:
41/20 : 3 = 41/60 (tấn hàng)
Đề bài sai, \(p^2+1\) không chia hết cho 3 với mọi p
\(\Rightarrow p^2+1\) không thể chia hết 48 với mọi p
Chiều rộng: x (m) (x>0)
=> Chiều dài: 3x (m)
=> Diện tích ban đầu: x. 3x= 3x2 (m2)
Tăng chiều dài và chiều rộng mỗi bên 5m, diện tích mới là: (x+5). (3x+5)= 3x2+20x+25 (m2)
Diện tích mới tăng 385m2 so với diện tích ban đầu:
=> 3x2+20x+25 - 385 = 3x2
<=> 20x= 360
<=>x=18 (TM)
Vậy: Miếng đất HCN có chiều rộng 18m và chiều dài 54m
Không gian mẫu: \(C_{12}^4\)
- Chọn 4 lớp có số thứ tự liên tiếp nhau: có 9 cách
- Chọn 4 lớp trong đó có 3 lớp liên tiếp và 1 lớp không liên tiếp với 3 lớp còn lại:
Chọn bộ 3 số liên tiếp: có 10 cách
+ 3 lớp liên tiếp nhau là 123 hoặc 10-11-12: chọn lớp còn lại có 8 cách \(\Rightarrow2.8=16\) cách
+ 8 trường hợp còn lại mỗi trường hợp có 7 cách chọn \(\Rightarrow7.8=56\) cách
\(\Rightarrow9+16+56=81\) cách
Xác suất: \(P=\dfrac{81}{C_{12}^4}=\dfrac{9}{55}\)
1) 42/35 - [ 33/14 . 21/22 - ( 54/25 : 27/25 - 7/10 )]
= 42/35 - ( 9/4-13/10)
=42/35-19/20
=1/4
2) a) 5/21 . x/34 = 35/102
x/34=35/102 : 5/21
x/34=49/34
=> x=34
Vậy x=34
b) 15/x . 21/13 = 45/91
15/x=45/91 : 21/13
15/x=15/49
=> x=49
Vậy x=49