K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

c) Cần chứng minh  AD/AE= DK/KE

HK là phân giác góc DHE => DK/KE=DH/HE (1)

Tam giác ADH~AOE => DH/AD=OE/AO

Tam giác ADO~AHE => OD/AO=HE/AE

Vì OE/AO=OD/AO= > DH/AD=HE/AE  => DH/HE= AD/AE(2)

Từ 1-2 => AD/AE= DK/KE => đpcm

d) Kẻ DN'//BE với N' thuộc BC. Kéo dài AN' cắt BE tại M'. Chứng minh BE=EM' là xong.

Sử dụng talet và tam giác đồng dạng suy ra tỷ số DN'/BE=DN'/EM' => BE=EM' nhé.

8 tháng 4 2017

mình có cấp 40

8 tháng 4 2017

rảnh.

ahihihihihi.........!

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

31 tháng 1 2018

B B C C A A M M K K H H I I P P Q Q T T

a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.

Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.

b) Gọi  T là giao điểm của MI với AB.

Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\)  (Hai góc nội tiếp)

Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)

Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)

\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)

Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)

Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)

8 tháng 4 2017

888 hhhh

8 tháng 4 2017

ủng hộ mk nha mọi người