K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

uk

tích cho mk nhé

9 tháng 4 2017

giúp minhf với ạ =))

9 tháng 4 2017

Hình nón nhé

10 tháng 4 2017

Bước 1: Tìm \(\Delta\)và rút gọn

Bước 2: Để pt .. <=> \(\Delta\).. 0

Bước 3: Kết luận

Chúc bạn thành công =))))))

10 tháng 4 2017

Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé 

14 tháng 1 2021
Ta có ax^3 + by^3 = (x + y)(ax^2 + by^2) - xy(ax + by) => 9 = 5(x + y) - 3xy (1) ax^4 + by^4 = (x + y)(ax^3 + by^3) - xy(ax^2 + by^2) => 17 = 9(x + y) - 5xy (2) Từ (1) và (2) => x + y = 3 và xy = 2 => x, y là nghiệm của pt ∝^2 - 3∝ + 2 = 0 <=> (∝ - 1)(∝ - 2) = 0 <=> ∝ = 1 hoặc ∝ = 2 => (x , y) = (1 ; 2) hoặc (2 ; 1) Không mất tính tổng quát, giả sử (x , y) = (1 ; 2) Giả thiết ban đầu <=> a + 2b = 3; a + 4b = 5 ; a + 8b = 9 ; a + 16b = 17 => a = b = 1 Vậy ax^2001 + by^2001 = 1.1^2001 + 1.2^2001 = 1 + 2^2001
14 tháng 1 2021
Ta có ax^3 + by^3 = (x + y)(ax^2 + by^2) - xy(ax + by) => 9 = 5(x + y) - 3xy (1) ax^4 + by^4 = (x + y)(ax^3 + by^3) - xy(ax^2 + by^2) => 17 = 9(x + y) - 5xy (2) Từ (1) và (2) => x + y = 3 và xy = 2 => x, y là nghiệm của pt ∝^2 - 3∝ + 2 = 0 <=> (∝ - 1)(∝ - 2) = 0 <=> ∝ = 1 hoặc ∝ = 2 => (x , y) = (1 ; 2) hoặc (2 ; 1) Không mất tính tổng quát, giả sử (x , y) = (1 ; 2) Giả thiết ban đầu <=> a + 2b = 3; a + 4b = 5 ; a + 8b = 9 ; a + 16b = 17 => a = b = 1 Vậy ax^2001 + by^2001 = 1.1^2001 + 1.2^2001 = 1 + 2^2001
9 tháng 4 2017

?????????????

9 tháng 4 2017

??????????????? , hong bit !

13 tháng 4 2017

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

3 tháng 5 2020

ok jjj