cho tam giác ABC nhọn nội tiếp (O) . vẽ hai đường cao AE và CF cắt nhau tại H
CMR a, tứ giác BEHF nội tiếp
b, tứ giác AFEC nội tiếp
c, OB vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Em mới lớp 8 nên trình bày hơi lỗi xin anh thông cảm.
Xét tam giác HAC và tam giác ABC, ta có:
Góc C: góc chung
góc AHC = góc BAC (=90 độ)
Do đó: tam giác HAC đồng dạng với tam giác ABC
\(\Rightarrow\)\(\frac{HA}{HC}=\frac{AB}{AC}\Rightarrow AH=\frac{ABxHC}{AC}\left(1\right)\)
Xét tam giác HBA và tam giác ABC, ta có:
Góc B: góc chung
góc AHB = góc BAC (=90 độ)
Do đó: tam giác HAC đồng dạng với tam giác ABC
\(\Rightarrow\)\(\frac{HA}{HB}=\frac{AC}{ÁB}\Rightarrow AH=\frac{HBxAC}{AB}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\frac{HBxAC}{AB}=\frac{HCxAB}{AC}\Rightarrow\frac{\left(AB\right)^2}{\left(AC\right)^2}=\frac{HB}{HC}=\frac{9}{4}\Rightarrow\frac{AB}{AC}=\frac{3}{2}\)
VÌ AD là đường phân giác của tam giác ABC nên:
\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{2}{3}\)
Vậy \(\frac{DC}{DB}=\frac{2}{3}\)
Câu 1 x^2 - 8x +12 = 0 ( a = 1 ; b' = -4 ; c = 12 )
denta phẩy = b' bình - ac = (-4)^2 - 1*12 = 16 - 12 = 4 > 0
Do denta phẩy > 0 => pt có 2 ngiệm phân biệt
x một = -b' + căn denta phẩy tất cả trên a = 4 + căn 4 trên 1 = 6
x hai = -b' - căn denta phẩy tất cả trên a = 4 - căn 4 trên 1 = 2
KLuan
Câu 2
a) Với m = -1 => x^2 + 4x +3 = 0 ( a = 1 ; b= 4 ; c = 3)
Xét a - b + c = 1 - 4 + 3 = 0
=> x một = -1 ; x hai = -c trên a = -3 / 1 = -3
b) denta = b^2 - 4ac = -( m - 3 ) tất cả mũ hai - 4 * 1 * ( - 2m + 1 )
= m^2 + 2m + 5
= m^2 + 2m + 1/4 + 19/4 > hoặc = 19/4 >0
Vậy với mọi m thì pt có 2 nghiệm phân biệt
CHÚC BẠN HỌC GIỎI NHA !!!!!!!!!!!!!!