Cho hình thang ABCD(AB//CD). gọi o là giao điểm hai đường chéo AC và BD. Chứng minh rằng tam giác OAB đồng dạng với tam giác OCD. Chứng minh OA/AC=OB/BD. Đường thẳng a đi qua O và song song với hai đáy cắt cạnh bên AD tại M.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ \(x\ne-2\)
A=\(\frac{-2x+4}{x+2}\)=\(\frac{-2\left(x+2\right)+8}{x+2}=-2+\frac{8}{x+2}\)
Để A nguyên thì \(\frac{8}{x+2}\)nguyên =>x+2 thuộc uw8bạn tự giải nhé
Chứng minh với a,b,c dương thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
\(\Leftrightarrow\)\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{a+b+c}{2}+\left(a+b+c\right)\)
\(\Leftrightarrow\)\(\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (luôn đúng BĐT Netbitt)
C/m: \(VT=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
Ta có: \(x+\frac{1}{x}\ge2\) (x > 0) (*)
\(\Leftrightarrow\)\(\frac{x^2+1}{x}\ge\frac{2x}{x}\)
\(\Leftrightarrow\) \(\frac{x^2-2x+1}{x}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(x-1\right)^2}{x}\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
ÁP dụng BĐT (*) ta có:
\(VT=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(VT\ge\frac{1}{2}.9-3=\frac{3}{2}\)
\(\Rightarrow\)đpcm