K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

số lớn = 11

số bé =5

1 tháng 5 2017

Okie, tks bạn!

1 tháng 5 2017

Xét phương trình thứ nhất:

X2 + 2aX + 3b = 0

Ta có: ∆' = a2 - 3b

= (x + y + z) 2 - 3(xy + yz + zx) 

= x2 + y2 + z2 - xy - yz - zx

\(\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2}\ge0\)

Vậy PT X2 + 2aX + 3b = 0 có nghiệm với mọi x, y, z.

Phương trình còn lại làm tương tự nhé.

1 tháng 5 2017

Mơn b alibaba nguyên nha

30 tháng 4 2020

Cho mình xin đáp án câu a với ạ

30 tháng 4 2017

tưởng j

30 tháng 4 2017

bài này

12 tháng 3 2020

Phương trình đã cho có nghiệm\(\Leftrightarrow\Delta'=m-1\ge0\Leftrightarrow m\ge1\)

Theo hệ thức Vi - et, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2-m\end{cases}}\)

\(\Rightarrow m=x_1+x_2-x_1x_2\),Thay vào hệ thức \(2x_1^3+\left(m+2\right)x_2^2=5\),ta được:

\(2x_1^3+\left(2x_1+2x_2-x_1x_2\right)x_2^2=5\)

\(\Leftrightarrow2x_1^3+2x_1x_2^2+2x_2^3-x_1x_2^3=5\)

\(\Leftrightarrow2\left(x_1^3+x_2^3\right)-x_1x_2\left(x_2^2-2x_2\right)=5\)

\(\Leftrightarrow2\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]-x_1x_2\left(x_2^2-2x_2\right)=5\)

Vì x2 là nghiệm nên \(x_2^2-2x_2+2-m=0\)

\(\Leftrightarrow x_2^2-2x_2=m-2\left(1\right)\)

Đến đây tiếp tục dùng viet và tìm được m = 1

P/S: Không chắc