K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

** Sửa đề: $A=\frac{ab}{(b-c)(c-a)}+\frac{bc}{(c-a)(a-b)}+\frac{ac}{(a-b)(b-c)}$

\(A=\frac{ab(a-b)+bc(b-c)+ac(c-a)}{(a-b)(b-c)(c-a)}=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{-[(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)]}=-1\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

$5x^2+5y^2+8xy-2x+2y+2=0$

$\Leftrightarrow 4(x^2+y^2+2xy)+(x^2-2x+1)+(y^2+2y+1)=0$

$\Leftrightarrow 4(x+y)^2+(x-1)^2+(y+1)^2=0$

Ta thấy: $(x+y)^2\geq 0; (x-1)^2\geq 0; (y+1)^2\geq 0$ với mọi $x,y$ 

Do đó để tổng của chúng bằng $0$ thì:

$(x+y)^2=(x-1)^2=(y+1)^2=0$

$\Rightarrow x=1; y=-1$

Khi đó:

$M=0^2+(1-2)^{2024}+(-1+1)^{2025}=0+1+0=1$

 

13 tháng 12 2023

N = x² - 2xy + 3y² - 4y + 2023

= (x² - 2xy + y²) + (2y² - 4y) + 2023

= (x - y)² + 2(y² - 2y + 1) + 2021

= (x - y)² + 2(y - 1)² + 2021

Do (x - y)² ≥ 0 với mọi x, y ∈ R

⇒ (y - 1)² ≥ 0 với mọi y ∈ R

⇒ (x - y)² + 2(y - 1)² ≥ 0 với mọi x, y ∈ R

⇒ (x - y)² + 2(y - 1)² + 2021 > 0 với mọi x, y ∈ R

Vậy N luôn dương với mọi x, y ∈ R

12 tháng 12 2023

2xy - 4x + 5y - 10

= (2xy - 4x) + (5y - 10)

= 2x(y - 2) + 5(y - 2)

= (y - 2)(2x + 5)

12 tháng 12 2023

2xy - 4x + 5y -10

= 2x(y-2) + 5(y-2)

= (2x+5)(y-2)

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:

$x^2-6x+3=4y^2$

$\Leftrightarrow (x^2-6x+9)-6=4y^2$

$\Leftrightarrow (x-3)^2-6=4y^2$
$\Leftrightarrow 6=(x-3)^2-4y^2=(x-3)^2-(2y)^2=(x-3-2y)(x-3+2y)$

Ta thấy: $x-3-2y+(x-3+2y)=2(x-3)$ chẵn nên $x-3-2y, x-3+2y$ có cùng tính chẵn lẻ.

Mà tích $(x-3-2y)(x-3+2y)=6=1.6=6.1=2.3=3.2$ đều là các thừa số khác tính chẵn lẻ

$\Rightarrow$ không tồn tại $x,y$ nguyên thỏa mãn đề.

11 tháng 12 2023

\(\Leftrightarrow x\left(x+y\right)+2022\left(x+y\right)+x+2023=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2022\right)+x+2022+1=0\)

\(\Leftrightarrow\left(x+2022\right)\left(x+y+1\right)=-1\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2022=1\\x+y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+2022=-1\\x+y+1=1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-2021\\y=2019\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2023\\y=2023\end{matrix}\right.\end{matrix}\right.\)

11 tháng 12 2023

a) - Thị trường Thái Lan cung cấp lượng tinh bột sắn cho Đài Loan trong tháng 9 nhiều nhất

    - Thị trường Trung Quốc cung cấp lượng tinh bột sắn cho Đài Loan trong tháng 9 ít nhất

b) 9,9%

 

11 tháng 12 2023

a) Để M xác định thì \(\left\{{}\begin{matrix}3x\ne0\\x+1\ne0\\2-4x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(M=\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)

\(M=\left[\dfrac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\dfrac{2\cdot3x}{3x\left(x+1\right)}-\dfrac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\dfrac{x+1}{2-4x}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\dfrac{x+1}{2-4x}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{-8x^2+2}{3x}\cdot\dfrac{1}{2\left(1-2x\right)}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{-2\left(4x^2-1\right)}{3x\cdot2\left(1-2x\right)}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{-\left(2x-1\right)\left(2x+1\right)}{-3x\cdot\left(2x-1\right)}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{2x+1}{3x}+\dfrac{x^2-3x-1}{3x}\)

\(M=\dfrac{x^2-x}{3x}\)

\(M=\dfrac{x\left(x-1\right)}{3x}\)

\(M=\dfrac{x-1}{3}\)

Vậy \(M=\dfrac{x-1}{3}\) với \(x\ne0;x\ne-1;x\ne\dfrac{1}{2}\).

b) Để \(M=2006\) thì \(\dfrac{x-1}{3}=2006\)

\(\Leftrightarrow x-1=6018\)

\(\Leftrightarrow x=6019\left(tmdk\right)\)

Vậy \(M=2006\) khi \(x=6019\).