cho x>0 , y>0 , x+y =2012
a) Tìm Max \(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b) Tìm Min \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E D C B M V H T K
Vào link này nhé bạn :https://lazi.vn/edu/exercise/cho-tam-giac-abc-nhon-h-la-truc-tam-qua-h-ve-duong-thang-cat-ab-tai-d-cat-ac-tai-e-sao-cho-hd-he
Tiên xư mờ thằng khỉ đầu chó,,,oánh đề còn sai nx thì lm cái đéo j mày???
nhắm 1 mắt để tập trung toàn bộ trí óc vào tầm nhìn 1 mắt đó,
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
cảm ơn bạn nhiều