K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

1.

x + \(\sqrt{1-x^2}\) = 1

ĐK: -1 <= x <= 1

<=> \(\sqrt{1-x^2}\)= 1 - x

Vì 1 - x >= 0 nên ta có thể bình phương 2 vế

<=> 1 - x2 = (1 - x)2

<=> 1 - x2 = 1 - 2x + x2

<=> 2x2 - 2x = 0

<=> 

x = 0

x = 1

23 tháng 5 2017

2.

Hệ tương đương

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\\frac{4y-3x}{xy}=1\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5\left(4y-3x\right)\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\y=\frac{3x}{4-x}\end{cases}}\)

Thay y = \(\frac{3x}{4-x}\)Vào PT trên

=> \(\frac{42x}{4-x}\)= 21x

<=> 42x = 21x(4 - x)

<=> 2x = x(4 - x)

<=> x2 - 2x = 0

x = 0 (Loại vi x khác 0)

x = 2, => y = 3

Vậy, Nghiêm của hệ PT:

x = 2

y = 3

Các bạn giúp mình làm ý d với ạ! Mình xin cảm ơn các bạnTừ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.a)     Chứng minh các hệ thức: MA2 = MB.MC; MA2 =...
Đọc tiếp

Các bạn giúp mình làm ý d với ạ! Mình xin cảm ơn các bạn

Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.

a)     Chứng minh các hệ thức: MA2 = MB.MC; MA2 = MH.MO.

b)    Chứng minh ∆MBH đồng dạng ∆MOC. Từ đó chứng minh tứ giác BCOH nội tiếp đường tròn.

c)     Chứng minh . Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. và ∆MKH vuông tại K.

d)    Giả sử BC = 3BM và D là trung điểm đoạn MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp ∆ODH

2
23 tháng 5 2017

ý c làm thế nào vậy bạn?

10 tháng 3 2019

M O C B A E I H K D

a) Xét đường tròn (O) có tiếp tuyến MA, cát tuyến MBC => MA2 = MB.MC (Hệ thức lượng đường tròn) (đpcm)

Xét \(\Delta\)MOA vuông tại A, đường cao AH => MA2 = MH.MO (Hệ thức lượng tam giác vuông) (đpcm)

b) Từ câu a ta có: MB.MC = MH.MO (=AM2) => \(\Delta\)MBH ~ \(\Delta\)MOC (c.g.c) => ^MHB = ^MCO

=> Tứ giác BCOH nội tiếp đường tròn (đpcm).

c) Áp dụng ĐL Pytagore, ta có các đẳng thức về cạnh:

IK2 = OI2 - OK2 = OI2 - OA2 = (OM - IM)2 - OA2 = OM2 - 2.OM.IM + IM2 - OA2 = AM2 - MH.MO + IM2

= AM2 - AM2 + IM2 = IM2 => IK = IM. Do đó: IK = IM = IH = MH/2

Xét \(\Delta\)MKH có: Trung tuyến KI=MH/2 (cmt) => \(\Delta\)KMH vuông tại K (đpcm).

d) Từ câu a: \(MA^2=MB.MC=\frac{MC}{4}.MC=\frac{MC^2}{4}\) => MA = MC/2 = MD

Từ đó: MA2 = MD2 = MH.MO => \(\Delta\)MDH ~ \(\Delta\)MOD (c.g.c) => ^MDH = ^MOD = 1/2.Sđ(HD(ODH)

Suy ra: MC tiếp xúc với đường tròn (ODH) (đpcm).

23 tháng 5 2017

Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza 

23 tháng 5 2017

vẻ vang gì 100% sai

23 tháng 5 2017

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

22 tháng 5 2017

giảm bậc bạn

29 tháng 5 2017

bạn giúp mình được k

22 tháng 5 2017

áp dụng nè \(a^3+b^3\ge ab\left(a+b\right)\)

30 tháng 8 2020

Bạn tham khảo câu trả lời tại đây:

https://olm.vn/hoi-dap/detail/63983977591.html

Câu hỏi của Tran Toan - Toán lớp 8 - Học toán với OnlineMath

22 tháng 5 2017

tách như này nè

\(x^2+2y^2+3xy+3x+5y+2=17\)

5 tháng 2 2018

bn tham khảo câu này nha https://h.vn/hoi-dap/question/79049.html

chúc bn học tốt.tk mk nha

22 tháng 5 2017

áp dụng BĐT Cauchy ta có

\(\frac{x^3}{y+2z}+\frac{y+2z}{9}+\frac{1}{3}>=3\sqrt[3]{\frac{x^3}{y+2z}.\frac{\left(y+2z\right)}{9}.\frac{1}{3}}=x\)

\(=>\frac{x^3}{y+2z}>=x-\frac{y+2z}{9}-\frac{1}{3}\)

Tương tự \(\frac{y^3}{z+2x}>=y-\frac{z+2x}{9}-\frac{1}{3}\),\(\frac{z^3}{x+2y}>=z-\frac{x+2y}{9}-\frac{1}{3}\)

\(=>P>=\left(x+y+z\right)-\frac{3\left(x+y+z\right)}{9}-\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\)

Mà x+y+z=3

\(=>P>=3-1-1=1\)

=>Min P=1 

Dấu "=" xảy ra khi x=y=z=1

22 tháng 5 2017

bạn đăng bđt đi CTV,,,,mik lm vs

22 tháng 5 2017

\(A=\sqrt{\left(3+\sqrt{3}\right)+2\sqrt{\left(3+\sqrt{3}\right)\left(\sqrt{5}-2\right)+\left(\sqrt{5}-2\right)}-\sqrt{3+\sqrt{3}}}\)

\(=\sqrt{3+\sqrt{3}}+\sqrt{\sqrt{5}-2}-\sqrt{3+\sqrt{3}}=\sqrt{\sqrt{5}-2}\)

ok???

23 tháng 5 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Đường tròn c: Đường tròn qua N với tâm O Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [B, M] Đoạn thẳng n: Đoạn thẳng [M, E] Đoạn thẳng p: Đoạn thẳng [F, N] Đoạn thẳng q: Đoạn thẳng [M, N] Đoạn thẳng r: Đoạn thẳng [Q, P] Đoạn thẳng s: Đoạn thẳng [P, E] B = (-1.04, 1.22) B = (-1.04, 1.22) B = (-1.04, 1.22) C = (4.1, 1.2) C = (4.1, 1.2) C = (4.1, 1.2) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q

a. Ta thấy do ABCD là hình vuông nên \(\widehat{FCN}=\widehat{MAE}=45^o\)

Lại có \(\widehat{FCN}=\widehat{FBN}\) (Góc nội tiếp cùng chắn cung FN)

Vậy nên \(\widehat{MAE}=\widehat{MBE}\) hay tứ giác AMEB nội tiếp.

b. Do  tứ giác AMEB nội tiếp nên \(\widehat{MEB}=180^o-\widehat{BAM}=90^o\)

Do P thuộc đường tròn (O) nên \(\widehat{MPB}=90^o\Rightarrow\)MPEB nội tiếp.

\(\Rightarrow\widehat{MBP}=\widehat{MEP}\)

Xét tam giác MBP có \(\widehat{MBP}+\widehat{BMP}=90^o\)

Xét tam giác FMN có \(\widehat{QNP}+\widehat{BMP}=90^o\)

Vậy \(\widehat{QNP}=\widehat{MBP}=\widehat{MEP}\)

Vậy tứ giác QPNE nội tiếp hay \(\widehat{QPN}=180^o-\widehat{QEN}=90^o\)

Góc \(\widehat{BPN}=90^o\Rightarrow\) B, Q, P thẳng hàng.

23 tháng 5 2017

Woa vẽ được hình à. Chỉ cho em với chị HOÀNG THỊ THU HIỀN.