K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Với m = 1 ta có phương trình:

\(x^2-2x+1=0\)

 Sử dụng đen ta ta có: \(\Delta=\left(-2\right)^2-4.1.1=0\)

nên phương trình có nghiệm kép  \(x_1=x_2=\frac{2}{2}=1\)

Vậy phương trình trên có nghiệm x = 1

b) Đặt phương trình \(x^2-\left(3m-1\right)x+2m^2-m=0\left(1\right)\) \(\Rightarrow\Delta>0\)

\(\Leftrightarrow\left[-\left(3m-1\right)\right]^2-4.1.\left(2m^2-m\right)>0\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow9m^2-6m+1-8m^2+4m>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)

\(\left|x_1-x_2\right|-2=0\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)\(\left(2\right)\)

Áp dụng hệ thức Vi-ét cho phương trình ( 1 ) ta có:

\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

từ ( 2 ) suy ra \(\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

\(\Leftrightarrow9m^2-6m+1-8m^2+4m=4\)

\(\Leftrightarrow m^2-2m+1-4=0\)

\(\Leftrightarrow m^2-2m-3=0\Leftrightarrow\)\(\left(m+1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=-1\left(tmđk\right)\\m=3\left(tmđk\right)\end{cases}}}\)

Vậy \(m=-1;m=3\)thỏa mãn yêu cầu đề bài đã cho

7 tháng 6 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)

\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)

\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)

\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)

\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)

6 tháng 6 2018

5 người

6 tháng 6 2018

Sai rồi bn ơi

6 tháng 6 2018

Ta có a=999..1 ,2004 chữ số 9 

=> a=999...0+1 .2004 chữ số 9 

=>ab=999...0*222..222 +2222...2222 (có 2004 chữ số 9 ; 2005 chữ số 2 );

 Tổng các chữ số của 222..222 (2005 chữ số 2 ) là 2*2005 =4010

Có 4005 chia hết cho 3 

=> 222...222(2005 chữ số 2 )-5 chia hết cho 3 

Lại có 999...0*222..222 (có 2004 chữ số 9 ; 2005 chữ số 2 ) chia hết cho 3 

=>ab-5 chia hết cho 3

6 tháng 6 2018

K=\(\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{x-1-2x+3\sqrt{x}-2\sqrt{x}-1-6+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

Để K>0 thì :\(\frac{1}{\sqrt{x}-1}>0\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)

Với x>1 thoả mãn yêu cầu.

6 tháng 6 2018

Đề bài sai !

Vì: Nếu \(n=0\Rightarrow5^{2n+2}+2^{2n+1}=5^{2.0+2}+2^{2.0+1}\)

                                                                 \(=5^2+2^1\)

                                                                   \(=27\)không chia hết cho 11 !

30 tháng 9 2019

sai cmnr
 

6 tháng 6 2018

mình ko bít nhưng cũng chúc ban học tốt nha

6 tháng 6 2018

kết bạn với mk nha

6 tháng 6 2018

bạn khai triển ra rồi rút gọn đi là đc

6 tháng 6 2018

\(\left(x^2+2x+3\right)\left(3x^2-2x+1\right)-3x^2\left(x^2+2\right)-4x\left(x^2-1\right)=3\)