Chứng minh rằng: 1110 - 1 chia hết cho 600
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+x-6}{x-4}>0\) <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)
<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:
+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)
+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)
Từ (1) và (2) => Nghiệm của PT là: x<2; x khác 3 và x>4
Để \(\frac{x^2+x-6}{x-4}>0\)thì
\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)
Thứ 1
Để \(x^2+x-6>0\)
Thì \(x^2+x>6\)
Mà \(x^2\ge0\)và \(x^2>x\)
Suy ra \(x^2+x\ge0\)
Suy ra \(x>2\)và \(x\ge-2\)
Thứ 2
\(x-4>0\)
Suy ra \(x>4\)
Vậy x phải thỏa mãn điều kiện sau
\(x\ge-2\)
Căn phòng hình vuông có kích thước là 21 lần cạnh viên gạch.
Các viên gạch men trắng nằm trên 2 đường chéo nên số viên là: 21 + 21 - 1 = 41 (viên)
(Chú ý trừ đii 1 do cạnh hình vuông lẻ nên hai đường chéo có chung 1 ô).
Số viên gạch men xanh là số ô còn lại và bằng:
441 - 41 = 400 (viến)
ĐS: 400 viên xanh
Gọi cạnh hình vuông chứa số viên gạch là x
mà diện tích hình vuông x^2 =441 viên
=>x = 21
vậy cạnh hình vuông chứa 21viên gach.;
vì& loại men trắng nằm trên hai đường chéo của nền nhà.
=>mỗi hàng chứa 2 viên gạch .
Riêng hàng số 11, ô số 11
chỉ chứa 1 viên (vì giao điểm của hai đường chéo)
Nên số viên gạch trắng là:
2 x 20 +1 =41 (viên)
số viên gạch xanh là :
441- 41 =400 (viên gạch)
Đáp số : 400 viên gạch men xanh.