a;b;c là các số thực Cho \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
CMR:ab2+bc2+ca2=a3+b3+c3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M I E F
a) _ Xét tam giác AME và tam giác AMF có :
E = F ( = 90 độ)
AM là cạnh huyền chung
A1=A2 ( AM là tia phân giác của BAC)
suy ra : tam giác AME = tam giác AMF ( CH-GN)
suy ra AE = AF ( 2 cạnh tương ứng)
suy ra tam giác AEF cân tại A
vẽ hình tạm nha
~ chúc bn học tốt~
Tâ có \(\frac{315-x}{101}+\frac{313-x}{103}-\frac{x-311}{105}-\frac{x-309}{107}=-4\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{x-309}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}-\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}-\frac{1}{107}\right)=0\)
\(\Rightarrow416-x=0\Leftrightarrow x=416\)
#học tốt
\(\frac{2}{x}=\frac{5}{y}\Rightarrow\frac{x}{2}=\frac{y}{5}\\ \)
Đặt\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
\(\Rightarrow xy=2k.5k=10k^2\)Mặt khác, \(xy=1000\)\(\Rightarrow10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm10\)
*Với\(k=10\Rightarrow x=20,y=50\)
*Với \(k=-10\Rightarrow x=-20,y=-50\)
Vậy\(\hept{\begin{cases}x=-50,y=-20\\x=50,y=20\end{cases}}\)
theo đề ta có :
xy= 1000 ==> y=1000/x (1)
theo đề ta lại có 2/x =5/y
==> 2y/xy=5x/xy
==> 2y = 5x (2)
thay (1) vào (2) ta đc 2.1000/x=5x
2000/x = 5x
2000 = 5x^2
400 = x^2
==>x=20 hoặc x=-20
mà theo đề thì x,y <0 nên loại x= 20 và nhận x=-20
+ x= -20 thì y = 1000/-20= -50
vậy cặp số x , y thỏa mãn là
x= -20 và y = -50
k cho mk nha
a) Xét 2 tam giác ta có :
Góc AHB=AHC (= 90 độ )
AH chung
AB = AC ( vì tam giác ABC cân )
=> 2 tam giác bằng nhau
=> BH=HC
=> AH vừa là đường cao vừa là đg trung tuyến đồng thời là tia phân giác của góc BAC
b) Xét tam giác ABH vuông tại H, áp dụng đli Py-ta-go ta có:
BH^2 + AH^2= BA^2
hay 8^2 + AH^2= 10^2
=> AH = 6 (cm)
c) Trong tam giác ABC đều có E là trung điểm của AC => BE là đg cao
Mà AH và BE là 2 đg cao cắt nhau tại G => G là trực tâm
=> GH = 1/3. AH => GH = 1/3 . 6 = 2 (cm )
d) Vì Hx // AC => Góc CEB = AFC (so le trong)
=> CF cũng là đg cao của tam giác ABC
=> 3 điểm C, G, F thẳng hàng
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(do ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇒BAHˆ=CAHˆBAH^=CAH^(hai góc tương ứng)
mà tia AH là tia nằm giữa của hai tia AB,AC
nên AH là tia phân giác của BACˆBAC^(đpcm)
b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
AB2=AH2+BH2AB2=AH2+BH2
hay 102=AH2+82102=AH2+82
⇒AH2=102−82=36⇒AH2=102−82=36
⇒AH=36−−√=6cm⇒AH=36=6cm
Vậy: AH=6cm
c) Ta có: ΔABH=ΔACH(cmt)
⇒HB=HC(hai cạnh tương ứng)
mà H nằm giữa B và C
nên H là trung điểm của BC
Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC(do H là trung điểm của BC)
BE là đường trung tuyến ứng với cạnh AC(do E là trung điểm của AC)
AH∩BE={G}AH∩BE={G}
Do đó: G là trọng tâm của ΔABC(đ/n)
⇒AG=AH⋅23=6⋅23=4cmAG=AH⋅23=6⋅23=4cm
Ta có: AG+GH=AH(do A,G,H thẳng hàng)
hay GH=AH=AG=6-4=2cm
Vậy: GH=2cm
d) Ta có: BAHˆ=CAHˆBAH^=CAH^(cmt)
và FHAˆ=CAHˆFHA^=CAH^(so le trong, AC//HF)
nên BAHˆ=FHAˆBAH^=FHA^
hay FAHˆ=FHAˆFAH^=FHA^
Xét ΔFAH có FAHˆ=FHAˆFAH^=FHA^(cmt)
nên ΔFAH cân tại F(định lí đảo tam giác cân)
⇒FH=FA(1)
Ta có: ABCˆ=ACBˆABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)
mà FHBˆ=ACBˆFHB^=ACB^(đồng vị, HF//AC)
nên ABCˆ=FHBˆABC^=FHB^
hay FBHˆ=FHBˆFBH^=FHB^
Xét ΔFHB có FBHˆ=FHBˆFBH^=FHB^(cmt)
nên ΔFHB cân tại F(đl đảo của tam giác cân)
⇒FH=FB(2)
Từ (1) và (2) suy ra AF=BF
mà F nằm giữa A và B
nên F là trung điểm của AB
Xét ΔABC có
CG là đường trung tuyến ứng với cạnh AB(do G là trọng tâm của ΔABC)
CF là đường trung tuyến ứng với cạnh AB(do F là trung điểm của AB)
mà CG và CF có điểm chung là C
nên C,G,F thẳng hàng(đpcm)
hình tự vẽ nhé
a) xét tam giác ABM và tam giác DCM có :
BM = CM (vì M là trung điểm BC )
MA = MD ( gt )
góc BMA = góc DMC ( đối đỉnh )
==> tam giác ABM - tam giác DCM ( c-g-c ) (đpcm)
b ) vì tam giác ABM = tam giác DCM ( câu a ) nên ta có góc ABM = góc MCD ( góc tương ứng )
mà góc ABM và góc MCD nằm ở vị trí so le trong
==> AB // CD ( đpcm )
c) ta có tam giác ABM = tam giác DCM ( câu a )
==> AB = CD ( cạnh tương ứng ) (1)
xét tam giác ABC vuông tại góc A nên ta có:
BC^2 = AC^2 + AB^2 ( Py-ta-go) <=> AB^2 = BC^2 -AC^2
hay AB^2 = 10^2 - 8^2 = 100 - 64 = 36
==> AB = căn bậc hai của 36 = 6 (cm) (2)
từ (1) và (2) ==> CD = 6 cm ( đpcm )
A= 75. (42004+.......+4+1) + 25
= 25 . (4-1) . (42004+.....+4+1) + 25
= 25.[4.(42004+......+4+1) - (42004+......+4+1)] + 25
= 25.[ (4+ 42+........+ 42005 ) - ( 1+ 4 +........+42004)] + 25
= 25.(42005 - 1) + 25
= 25. 42005- 25 +25
= 25. 42005
= (25. 4). 42004
= 100. 22004
Mà 100 chia hết cho 100 => 100. 22004 chia hết cho 100
=> A chia hết cho 100 ( đccm)
a) Ta có : \(\orbr{\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}}\)
=> \(\left(x+20\right)^{100}+\left|y+4\right|\ge0\)
Do đó \(\left(x+20\right)^{100}=0\)=> \(x=-20\)
\(y+4=0\Rightarrow y=-4\)
Vậy x = -20 và y = -4
b) \(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)
Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)
\(\text{Một cách khác}\)
\(\text{Ta có:}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Leftrightarrow ab^2+abc=abc+b^2c\)
\(\Leftrightarrow a=c\left(1\right)\)
\(\frac{bc}{b+c}=\frac{ca}{a+c}\)
\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)
\(\Rightarrow abc+bc^2=abc+c^2a\)
\(\Rightarrow b=a\left(2\right)\)
\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)
\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)