Giải hpt : \(2\left(4.x^3-y^3\right)+12.x^2+y^2+2x\left(y^2+3\right)+1=0\)
\(\sqrt{y+2}.\sqrt[3]{x+5}=x^2+x-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)
b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)
\(\sqrt{\left(1+x^2\right)^3}-4x^3=1-3x^4\)
\(\Leftrightarrow\left(\sqrt{\left(1+x^2\right)^3}-1\right)-4x^3+3x^4=0\)
\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\sqrt{\left(1+x^2\right)^3}+1}-4x^3+3x^4=0\)
\(\Leftrightarrow\frac{x^2\left[\left(1+x^2\right)^2+\left(1+x^2\right)+1\right]}{\sqrt{\left(1+x^2\right)^3}+1}-4x^3+3x^4=0\)
\(\Leftrightarrow x^2\left(\frac{\left(1+x^2\right)^2+\left(1+x^2\right)+1}{\sqrt{\left(1+x^2\right)^3}+1}-4x+3x^2\right)=0\)
Ta có: \(\frac{\left(1+x^2\right)^2+\left(1+x^2\right)+1}{\sqrt{\left(1+x^2\right)^3}+1}-4x+3x^2\ge3x^2-4x+\frac{3}{2}>0\)
\(\Rightarrow x=0\)
Đề sai. Nếu a=2;b=1;c=0 thì \(a^4+b^4+c^4=16+1+0=17\)
\(a^2+b^2+c^2=4+1+0=5\)
\(4^{x+x}\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:2^4\)
\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)
\(4^x=2^{4\cdot x}:16\)
\(16=\frac{\left(2^4\right)^x}{4^x}\)
\(16=\frac{\left(2^4\right)^x}{4^x}\)
\(16=\frac{16^x}{4^x}\)
\(16=\left(\frac{16}{4}\right)^x\)
\(16=4^x\)
\(4^x=16\)
\(4^x=4^2\)
\(\Rightarrow x=2\)
Từ hàng thứ 2 qua thứ 3 là do cách triệt số khi chuyển vế
Mình bổ sung nha:
\(4^x\cdot4^x\cdot4^{\sqrt{x+2}}+2^{x^3}=4^x\cdot4^{\sqrt{x+2}}+2^{x^3}\cdot2^{4\cdot x}:16\)
\(\frac{4^x\cdot4^{\sqrt{x+2}}}{4^x\cdot4^{\sqrt{x+2}}}+2^{x^3}-2^{x^3}=\cdot2^{4\cdot x}:16:4^x\)